import torch import random # 参考 # 最大化均值差异MMD与Numpy/Tensorflow/Pytorch各类代码实现 - 小蔡叔叔开方舟的文章 - 知乎 # https://zhuanlan.zhihu.com/p/461656480 def guassian_kernel(source, target, kernel_mul=2.0, kernel_num=5, fix_sigma=None): ''' 将源域数据和目标域数据转化为核矩阵,即上文中的K Params: source: 源域数据(n * len(x)) target: 目标域数据(m * len(y)) kernel_mul: kernel_num: 取不同高斯核的数量 fix_sigma: 不同高斯核的sigma值 Return: sum(kernel_val): 多个核矩阵之和 ''' n_samples = int(source.size()[0])+int(target.size()[0])# 求矩阵的行数,一般source和target的尺度是一样的,这样便于计算 total = torch.cat([source, target], dim=0) #将source,target按列方向合并 #将total复制(n+m)份 total0 = total.unsqueeze(0).expand(int(total.size(0)), int(total.size(0)), int(total.size(1))) #将total的每一行都复制成(n+m)行,即每个数据都扩展成(n+m)份 total1 = total.unsqueeze(1).expand(int(total.size(0)), int(total.size(0)), int(total.size(1))) #求任意两个数据之间的和,得到的矩阵中坐标(i,j)代表total中第i行数据和第j行数据之间的l2 distance(i==j时为0) L2_distance = ((total0-total1)**2).sum(2) #调整高斯核函数的sigma值 if fix_sigma: bandwidth = fix_sigma else: bandwidth = torch.sum(L2_distance.data) / (n_samples**2-n_samples) #以fix_sigma为中值,以kernel_mul为倍数取kernel_num个bandwidth值(比如fix_sigma为1时,得到[0.25,0.5,1,2,4] bandwidth /= kernel_mul ** (kernel_num // 2) bandwidth_list = [bandwidth * (kernel_mul**i) for i in range(kernel_num)] #高斯核函数的数学表达式 kernel_val = [torch.exp(-L2_distance / bandwidth_temp) for bandwidth_temp in bandwidth_list] #得到最终的核矩阵 return sum(kernel_val)#/len(kernel_val) def mmd_rbf(source, target, kernel_mul=2.0, kernel_num=5, fix_sigma=None): ''' 计算源域数据和目标域数据的MMD距离 Params: source: 源域数据(n * len(x)) target: 目标域数据(m * len(y)) kernel_mul: kernel_num: 取不同高斯核的数量 fix_sigma: 不同高斯核的sigma值 Return: loss: MMD loss ''' batch_size = int(source.size()[0])#一般默认为源域和目标域的batchsize相同 kernels = guassian_kernel(source, target, kernel_mul=kernel_mul, kernel_num=kernel_num, fix_sigma=fix_sigma) #根据式(3)将核矩阵分成4部分 XX = kernels[:batch_size, :batch_size] YY = kernels[batch_size:, batch_size:] XY = kernels[:batch_size, batch_size:] YX = kernels[batch_size:, :batch_size] loss = torch.mean(XX + YY - XY -YX) return loss#因为一般都是n==m,所以L矩阵一般不加入计算