#!/usr/bin/env python3 # -*- coding:utf-8 -*- # Copyright (c) Megvii, Inc. and its affiliates. import itertools from typing import Optional import torch import torch.distributed as dist from torch.utils.data.sampler import BatchSampler as torchBatchSampler from torch.utils.data.sampler import Sampler class YoloBatchSampler(torchBatchSampler): """ This batch sampler will generate mini-batches of (mosaic, index) tuples from another sampler. It works just like the :class:`torch.utils.data.sampler.BatchSampler`, but it will turn on/off the mosaic aug. """ def __init__(self, *args, mosaic=True, **kwargs): super().__init__(*args, **kwargs) self.mosaic = mosaic def __iter__(self): for batch in super().__iter__(): yield [(self.mosaic, idx) for idx in batch] class InfiniteSampler(Sampler): """ In training, we only care about the "infinite stream" of training data. So this sampler produces an infinite stream of indices and all workers cooperate to correctly shuffle the indices and sample different indices. The samplers in each worker effectively produces `indices[worker_id::num_workers]` where `indices` is an infinite stream of indices consisting of `shuffle(range(size)) + shuffle(range(size)) + ...` (if shuffle is True) or `range(size) + range(size) + ...` (if shuffle is False) """ def __init__( self, size: int, shuffle: bool = True, seed: Optional[int] = 0, rank=0, world_size=1, ): """ Args: size (int): the total number of data of the underlying dataset to sample from shuffle (bool): whether to shuffle the indices or not seed (int): the initial seed of the shuffle. Must be the same across all workers. If None, will use a random seed shared among workers (require synchronization among all workers). """ self._size = size assert size > 0 self._shuffle = shuffle self._seed = int(seed) if dist.is_available() and dist.is_initialized(): self._rank = dist.get_rank() self._world_size = dist.get_world_size() else: self._rank = rank self._world_size = world_size def __iter__(self): start = self._rank yield from itertools.islice( self._infinite_indices(), start, None, self._world_size ) def _infinite_indices(self): g = torch.Generator() g.manual_seed(self._seed) while True: if self._shuffle: yield from torch.randperm(self._size, generator=g) else: yield from torch.arange(self._size) def __len__(self): return self._size // self._world_size