from datasets import load_dataset import os import torch from torch.utils.data import Dataset, DataLoader from transformers import BertTokenizer, BertForSequenceClassification from torch.optim import Adam from torch.nn import CrossEntropyLoss from typing import Dict, List, Optional, Any from utils.common.data_record import read_json from itertools import chain # from .global_bert_tokenizer import get_tokenizer from transformers import GPT2Tokenizer # gpt_neo_series_id = '1.3B_ckpt' # os.environ['gpt_neo_series_id'] = gpt_neo_series_id class No_Robotsbase(Dataset): def __init__(self, root_dir: str, split: str, transform: Any, classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]): assert transform is None self.tokenizer = GPT2Tokenizer.from_pretrained(f'experiments/elasticdnn/gpt_neo/{os.environ["gpt_neo_series_id"]}') special_tokens = {"pad_token":"<|pad|>"}#, "sep_token":"<|sep|>", "bos_token":"<|bos|>"} self.tokenizer.add_special_tokens(special_tokens) self.tokenizer.pad_token = "<|pad|>" # 传入tokenizer对象 # self.tokenizer.pad_token = self.tokenizer.eos_token self.tokenizer.sep_token = self.tokenizer.eos_token self.msgs = [] self.idx_map = [] self.ignore_classes = [] self.max_length = 768 # 设置文本的最大长度 self.split = split dataset = load_dataset(root_dir, split=('test' if split == 'val' else split)) for line in dataset: for i, msg in enumerate(line['messages']): if msg['role'] == 'assistant': self.msgs.append(line['messages'][:i + 1]) if self.split == 'val': self.msgs = self.msgs[:100] def __len__(self): return len(self.msgs) def __getitem__(self, idx): bos, eos, pad, sep = self.tokenizer.bos_token_id, self.tokenizer.eos_token_id, self.tokenizer.pad_token_id, self.tokenizer.sep_token_id role_tti = {'user': 0, 'assistant': 1, 'system': 2, 'pad': 3} role_sgn = {'user': "Q: ", 'assistant': "A: "} context_list = [con['content'] for con in self.msgs[idx]] role_list = [con['role'] for con in self.msgs[idx]] if self.split == 'val': self.tokenizer.padding_side = "left" input_ids = [] labels = [] for id, utter in enumerate(context_list[:-1]): if role_list[id] == 'system': tmp = self.tokenizer.encode(utter + '\n\n') else: tmp = self.tokenizer.encode(role_sgn[role_list[id]]) + self.tokenizer.encode(utter + '\n\n') input_ids += tmp input_ids += self.tokenizer.encode(role_sgn[role_list[len(context_list) - 1]]) if len(input_ids) > self.max_length - 128: return {'return_dict': True} leng = len(self.tokenizer.decode(input_ids)) input_ids = [pad] * (self.max_length - 128 - len(input_ids)) + input_ids labels = self.tokenizer.encode(context_list[-1], max_length=128, padding="max_length", truncation=True) if len(labels) > 128: return {'return_dict': True} x = { "input_ids": torch.tensor(input_ids), "labels": torch.tensor(labels), 'return_dict': True, 'len': leng } return x else: self.tokenizer.padding_side = "right" target = context_list[-1] input_ids = [] labels = [] for id, utter in enumerate(context_list[:-1]): if role_list[id] == 'system': tmp = self.tokenizer.encode(utter + '\n\n') else: tmp = self.tokenizer.encode(role_sgn[role_list[id]]) + self.tokenizer.encode(utter + '\n\n') input_ids += tmp input_ids += self.tokenizer.encode(role_sgn[role_list[len(context_list) - 1]]) labels = [-100] * len(input_ids) + self.tokenizer.encode(target) + [eos] # labels = input_ids + self.tokenizer.encode(target) + [eos] input_ids += self.tokenizer.encode(target) + [eos] # token_type_ids = [[role_tti[role_list[i]]] * (len(self.tokenizer.encode(utter)) + len(self.tokenizer.encode(role_sgn[role_list[i]]))) for i, utter in enumerate(context_list)] # token_type_ids += [[role_tti[role_list[-1]]]] # lm_labels = [[pad] * (len(list(chain(*input_ids))) - len(self.tokenizer.encode(target)) - 1)] + [self.tokenizer.encode(target)] + [eos] # input_ids = list(chain(*input_ids)) if len(input_ids) > self.max_length: return {'return_dict': True} # token_type_ids = list(chain(*token_type_ids)) attention_mask = [1] * len(input_ids) + [0] * (self.max_length - len(input_ids)) # labels = [[-100] * (len(token_type_ids) - len(self.tokenizer.encode(target)) - 1)] + [self.tokenizer.encode(target)] + [[eos]] # labels = list(chain(*labels)) # labels = input_ids.copy() labels += [-100] * (self.max_length - len(input_ids)) input_ids += [pad] * (self.max_length - len(input_ids)) # token_type_ids += [role_tti['pad']] * (self.max_length - len(token_type_ids)) x = { "input_ids": torch.tensor(input_ids), # "token_type_ids": torch.tensor(token_type_ids), "attention_mask": torch.tensor(attention_mask), "labels": torch.tensor(labels), 'return_dict': True } return x from ..ab_dataset import ABDataset from ..registery import dataset_register @dataset_register( name='No_robots', classes=['None'], task_type='Text Generation', object_type=None, class_aliases=[], shift_type=None ) class No_Robots(ABDataset): def create_dataset(self, root_dir: str, split: str, transform, classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]): return No_Robotsbase(root_dir, split, transform, classes, ignore_classes, idx_map)