from typing import List from data.dataloader import build_dataloader # from methods.elasticdnn.api.online_model import ElasticDNN_OnlineModel from methods.elasticdnn.api.online_model_v2 import ElasticDNN_OnlineModel import torch import sys from torch import nn from methods.elasticdnn.api.model import ElasticDNN_OfflineSegFMModel, ElasticDNN_OfflineSegMDModel from methods.elasticdnn.api.algs.md_pretraining_wo_fbs import ElasticDNN_MDPretrainingWoFBSAlg from methods.elasticdnn.model.base import ElasticDNNUtil from methods.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util from methods.elasticdnn.pipeline.offline.fm_to_md.vit import FM_to_MD_ViT_Util from methods.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util from methods.elasticdnn.pipeline.offline.fm_lora.vit import FMLoRA_ViT_Util from methods.elasticdnn.model.vit import ElasticViTUtil from utils.common.file import ensure_dir from utils.dl.common.model import LayerActivation, get_module, get_parameter from utils.common.exp import save_models_dict_for_init, get_res_save_dir from data import build_scenario from utils.dl.common.loss import CrossEntropyLossSoft import torch.nn.functional as F from utils.dl.common.env import create_tbwriter import os from utils.common.log import logger from utils.common.data_record import write_json # from methods.shot.shot import OnlineShotModel from methods.gem.gem_el_bert import GEMAlg import tqdm from methods.feat_align.mmd import mmd_rbf from experiments.utils.elasticfm_da import init_online_model, elasticfm_da device = 'cuda' app_name = 'secls' sd_sparsity = 0.8 settings = { 'involve_fm': True } scenario = build_scenario( source_datasets_name=['HL5Domains-ApexAD2600Progressive', 'HL5Domains-CanonG3', 'HL5Domains-CreativeLabsNomadJukeboxZenXtra40GB', 'HL5Domains-NikonCoolpix4300', 'HL5Domains-Nokia6610'], target_datasets_order=['Liu3Domains-Computer', 'Liu3Domains-Router', 'Liu3Domains-Speaker', 'Ding9Domains-DiaperChamp', 'Ding9Domains-Norton', 'Ding9Domains-LinksysRouter', 'Ding9Domains-MicroMP3', 'Ding9Domains-Nokia6600', 'Ding9Domains-CanonPowerShotSD500', 'Ding9Domains-ipod', 'Ding9Domains-HitachiRouter', 'Ding9Domains-CanonS100', 'SemEval-Laptop', 'SemEval-Rest'] * 2 + ['Liu3Domains-Computer', 'Liu3Domains-Router'], da_mode='close_set', data_dirs={ **{k: f'/data/zql/datasets/nlp_asc_19_domains/dat/absa/Bing5Domains/asc/{k.split("-")[1]}' for k in ['HL5Domains-ApexAD2600Progressive', 'HL5Domains-CanonG3', 'HL5Domains-CreativeLabsNomadJukeboxZenXtra40GB', 'HL5Domains-NikonCoolpix4300', 'HL5Domains-Nokia6610']}, **{k: f'/data/zql/datasets/nlp_asc_19_domains/dat/absa/Bing3Domains/asc/{k.split("-")[1]}' for k in ['Liu3Domains-Computer', 'Liu3Domains-Router', 'Liu3Domains-Speaker']}, **{k: f'/data/zql/datasets/nlp_asc_19_domains/dat/absa/Bing9Domains/asc/{k.split("-")[1]}' for k in ['Ding9Domains-DiaperChamp', 'Ding9Domains-Norton', 'Ding9Domains-LinksysRouter', 'Ding9Domains-MicroMP3', 'Ding9Domains-Nokia6600', 'Ding9Domains-CanonPowerShotSD500', 'Ding9Domains-ipod', 'Ding9Domains-HitachiRouter', 'Ding9Domains-CanonS100']}, **{k: f'/data/zql/datasets/nlp_asc_19_domains/dat/absa/XuSemEval/asc/14/{k.split("-")[1].lower()}' for k in ['SemEval-Laptop', 'SemEval-Rest']}, }, ) from experiments.elasticdnn.bert_base.online.se_cls_cl.model import ElasticDNN_SeClsOnlineModel elasticfm_model = ElasticDNN_SeClsOnlineModel('secls', init_online_model( 'experiments/elasticdnn/bert_base/offline/fm_to_md/se_cls/results/secls_md_w_fbs_index.py/20230704/999994-085209-logic_verify/models/fm_best.pt', 'experiments/elasticdnn/bert_base/offline/fm_to_md/se_cls/results/secls_md_w_fbs_index.py/20230704/999994-085209-logic_verify/models/md_best.pt', 'cls', __file__ ), device, { 'md_to_fm_alpha': 0.2, 'fm_to_md_alpha': 0.2 }) da_alg = GEMAlg from experiments.elasticdnn.bert_base.online.se_cls_cl.model import SeClsOnlineGEMModel da_model = SeClsOnlineGEMModel da_alg_hyp = { 'train_batch_size': 16, 'val_batch_size': 64, 'num_workers': 8, 'optimizer': 'AdamW', 'optimizer_args': {'lr': 1e-4, 'betas': [0.9, 0.999], 'weight_decay': 0.01}, 'scheduler': '', 'scheduler_args': {}, 'num_iters': 100, 'val_freq': 20, 'n_memories': 16, 'n_inputs': 3 * 224 * 224, 'margin': 0.5, 'num_my_iters': 0, 'sd_sparsity': 0.7 } elasticfm_da( [app_name], [scenario], [elasticfm_model], [da_alg], [da_alg_hyp], [da_model], device, settings, __file__, sys.argv[1] )