from typing import List from data.dataloader import build_dataloader # from methods.elasticdnn.api.online_model import ElasticDNN_OnlineModel from methods.elasticdnn.api.online_model_v2 import ElasticDNN_OnlineModel import torch import sys from torch import nn from methods.elasticdnn.api.model import ElasticDNN_OfflineSegFMModel, ElasticDNN_OfflineSegMDModel from methods.elasticdnn.api.algs.md_pretraining_wo_fbs import ElasticDNN_MDPretrainingWoFBSAlg from methods.elasticdnn.model.base import ElasticDNNUtil from methods.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util from methods.elasticdnn.pipeline.offline.fm_to_md.vit import FM_to_MD_ViT_Util from methods.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util from methods.elasticdnn.pipeline.offline.fm_lora.vit import FMLoRA_ViT_Util from methods.elasticdnn.model.bert import ElasticBertUtil from utils.common.file import ensure_dir from utils.dl.common.model import LayerActivation, get_module, get_parameter, set_module from utils.common.exp import save_models_dict_for_init, get_res_save_dir from data import build_scenario from utils.dl.common.loss import CrossEntropyLossSoft import torch.nn.functional as F from utils.dl.common.env import create_tbwriter import os from utils.common.log import logger from utils.common.data_record import write_json # from methods.shot.shot import OnlineShotModel from methods.feat_align.main import OnlineFeatAlignModel, FeatAlignAlg import tqdm from methods.feat_align.mmd import mmd_rbf class ElasticDNN_SeClsOnlineModel(ElasticDNN_OnlineModel): @torch.no_grad() def sd_feedback_to_md(self, after_da_sd, unpruned_indexes_of_layers): self.models_dict['sd'] = after_da_sd self.before_da_md = deepcopy(self.models_dict['md']) logger.info('\n\nsurrogate DNN feedback to master DNN...\n\n') # one-to-one cur_unpruned_indexes = None cur_unpruned_indexes_name = None for p_name, p in self.models_dict['sd'].named_parameters(): matched_md_param = self.get_md_matched_param_of_sd_param(p_name) logger.debug(f'if feedback: {p_name}') if matched_md_param is None: continue logger.debug(f'start feedback: {p_name}, {p.size()} -> {matched_md_param.size()}') # average # setattr(matched_md_module, matched_md_param_name, (matched_md_param + p) / 2.) if p_name in unpruned_indexes_of_layers.keys(): cur_unpruned_indexes = unpruned_indexes_of_layers[p_name] cur_unpruned_indexes_name = p_name if p.size() != matched_md_param.size(): logger.debug(f'cur unpruned indexes: {cur_unpruned_indexes_name}, {cur_unpruned_indexes.size()}') if p.dim() == 1: # norm new_p = deepcopy(matched_md_param) new_p[cur_unpruned_indexes] = p elif p.dim() == 2: # linear if p.size(0) < matched_md_param.size(0): # output pruned new_p = deepcopy(matched_md_param) new_p[cur_unpruned_indexes] = p else: # input pruned new_p = deepcopy(matched_md_param) new_p[:, cur_unpruned_indexes] = p p = new_p assert p.size() == matched_md_param.size(), f'{p.size()}, {matched_md_param.size()}' if 'classifier' in p_name: continue # if False: # self.last_trained_cls_indexes assert hasattr(self, 'last_trained_cls_indexes') print(self.last_trained_cls_indexes) diff = self._compute_diff(matched_md_param, p) # matched_md_param[self.last_trained_cls_indexes].copy_(p[self.last_trained_cls_indexes.to(self.device)]) matched_md_param.copy_(p) logger.debug(f'SPECIFIC FOR CL HEAD | end feedback: {p_name}, diff: {diff:.6f}') else: diff = self._compute_diff(matched_md_param, (matched_md_param + p) / 2.) matched_md_param.copy_((matched_md_param + p) / 2.) logger.debug(f'end feedback: {p_name}, diff: {diff:.6f}') def add_cls_in_head(self, num_cls): head: nn.Linear = get_module(self.models_dict['md'], 'classifier') new_head = nn.Linear(head.in_features, head.out_features + num_cls, head.bias is not None, device=self.device) # nn.init.zeros_(new_head.weight.data) # nn.init.zeros_(new_head.bias.data) new_head.weight.data[0: head.out_features] = deepcopy(head.weight.data) new_head.bias.data[0: head.out_features] = deepcopy(head.bias.data) set_module(self.models_dict['md'], 'classifier', new_head) set_module(self.models_dict['fm'], 'classifier', new_head) def get_accuracy(self, test_loader, *args, **kwargs): acc = 0 sample_num = 0 self.to_eval_mode() with torch.no_grad(): pbar = tqdm.tqdm(enumerate(test_loader), total=len(test_loader), dynamic_ncols=True, leave=False) for batch_index, (x, y) in pbar: for k, v in x.items(): if isinstance(v, torch.Tensor): x[k] = v.to(self.device) y = y.to(self.device) output = self.infer(x) pred = F.softmax(output, dim=1).argmax(dim=1) correct = torch.eq(pred, y).sum().item() acc += correct sample_num += len(y) pbar.set_description(f'cur_batch_total: {len(y)}, cur_batch_correct: {correct}, ' f'cur_batch_acc: {(correct / len(y)):.4f}') acc /= sample_num return acc def get_elastic_dnn_util(self) -> ElasticDNNUtil: return ElasticBertUtil() def get_fm_matched_param_of_md_param(self, md_param_name): # only between qkv.weight, norm.weight/bias self_param_name = md_param_name fm = self.models_dict['fm'] if any([k in self_param_name for k in ['fbs', 'ab', 'embeddings']]): return None p = get_parameter(self.models_dict['md'], self_param_name) if p.dim() == 0: return None elif p.dim() == 1 and 'LayerNorm' in self_param_name and 'weight' in self_param_name: return get_parameter(fm, self_param_name) # 1. xx.qkv.to_qkv.yy to xx.qkv.qkv.aa and xx.qkv.abs.zz if ('query' in self_param_name or 'key' in self_param_name or \ 'value' in self_param_name) and ('weight' in self_param_name): ss = self_param_name.split('.') fm_qkv_name = '.'.join(ss[0: -1]) + '.fc' fm_qkv = get_module(fm, fm_qkv_name) fm_abs_name = '.'.join(ss[0: -1]) + '.ab' fm_abs = get_module(fm, fm_abs_name) # NOTE: unrecoverable operation! multiply LoRA parameters to allow it being updated in update_fm_param() # TODO: if fm will be used for inference, _mul_lora_weight will not be applied! if not hasattr(fm_abs, '_mul_lora_weight'): logger.debug(f'set _mul_lora_weight in {fm_abs_name}') setattr(fm_abs, '_mul_lora_weight', nn.Parameter(fm_abs[1].weight @ fm_abs[0].weight)) return torch.cat([ fm_qkv.weight.data, # task-agnositc params fm_abs._mul_lora_weight.data # task-specific params (LoRA) ], dim=0) # elif 'to_qkv.bias' in self_param_name: # ss = self_param_name.split('.') # fm_qkv_name = '.'.join(ss[0: -2]) + '.qkv.bias' # return get_parameter(fm, fm_qkv_name) elif 'dense' in self_param_name and 'weight' in self_param_name: fm_param_name = self_param_name.replace('.linear', '') return get_parameter(fm, fm_param_name) # elif 'mlp.fc2' in self_param_name and 'weight' in self_param_name: # fm_param_name = self_param_name # return get_parameter(fm, fm_param_name) else: # return get_parameter(fm, self_param_name) return None def update_fm_param(self, md_param_name, cal_new_fm_param_by_md_param): if not ('query' in md_param_name or 'key' in md_param_name or 'value' in md_param_name): matched_fm_param_ref = self.get_fm_matched_param_of_md_param(md_param_name) matched_fm_param_ref.copy_(cal_new_fm_param_by_md_param) else: new_fm_attn_weight, new_fm_lora_weight = torch.chunk(cal_new_fm_param_by_md_param, 2, 0) ss = md_param_name.split('.') fm = self.models_dict['fm'] # update task-agnostic parameters fm_qkv_name = '.'.join(ss[0: -1]) + '.fc' fm_qkv = get_module(fm, fm_qkv_name) fm_qkv.weight.data.copy_(new_fm_attn_weight) # update task-specific parameters fm_abs_name = '.'.join(ss[0: -1]) + '.ab' fm_abs = get_module(fm, fm_abs_name) fm_abs._mul_lora_weight.data.copy_(new_fm_lora_weight) # TODO: this will not be applied in inference! def get_md_matched_param_of_fm_param(self, fm_param_name): return super().get_md_matched_param_of_fm_param(fm_param_name) def get_md_matched_param_of_sd_param(self, sd_param_name): # raise NotImplementedError # only between qkv.weight, norm.weight/bias self_param_name = sd_param_name md = self.models_dict['md'] if any([k in self_param_name for k in ['fbs', 'ab', 'embeddings']]): return None p = get_parameter(self.models_dict['sd'], self_param_name) if p.dim() == 0: return None elif p.dim() == 1 and 'LayerNorm' in self_param_name and 'weight' in self_param_name: return get_parameter(md, self_param_name) if 'classifier' in self_param_name: return get_parameter(md, self_param_name) # 1. xx.qkv.to_qkv.yy to xx.qkv.qkv.aa and xx.qkv.abs.zz if ('query' in self_param_name or 'key' in self_param_name or \ 'value' in self_param_name) and ('weight' in self_param_name): return get_parameter(md, self_param_name) # NOTE: no fbs in qkv! # elif 'to_qkv.bias' in self_param_name: # ss = self_param_name.split('.') # fm_qkv_name = '.'.join(ss[0: -2]) + '.qkv.bias' # return get_parameter(fm, fm_qkv_name) elif 'intermediate.dense.0.weight' in self_param_name: fm_param_name = '.'.join(self_param_name.split('.')[0: -2]) + '.linear.weight' return get_parameter(md, fm_param_name) elif 'output.dense' in self_param_name and 'weight' in self_param_name: fm_param_name = self_param_name return get_parameter(md, fm_param_name) else: # return get_parameter(fm, self_param_name) return None def get_task_head_params(self): head = get_module(self.models_dict['sd'], 'classifier') return list(head.parameters()) from methods.gem.gem_el_bert import OnlineGEMModel import tqdm from methods.feat_align.mmd import mmd_rbf from copy import deepcopy class SeClsOnlineGEMModel(OnlineGEMModel): def get_trained_params(self): qkv_and_norm_params = [p for n, p in self.models_dict['main'].named_parameters() if 'query' in n or 'key' in n or 'value' in n or 'dense' in n or 'LayerNorm' in n] return qkv_and_norm_params def forward_to_get_task_loss(self, x, y): return F.cross_entropy(self.infer(x), y) def add_cls_in_head(self, num_cls): return head: nn.Linear = get_module(self.models_dict['main'], 'head') new_head = nn.Linear(head.in_features, head.out_features + num_cls, head.bias is not None, device=self.device) new_head.weight.data[0: head.out_features] = deepcopy(head.weight.data) new_head.bias.data[0: head.out_features] = deepcopy(head.bias.data) set_module(self.models_dict['main'], 'head', new_head) def infer(self, x, *args, **kwargs): return self.models_dict['main'](**x) def get_accuracy(self, test_loader, *args, **kwargs): _d = test_loader.dataset from data import build_dataloader, split_dataset if _d.__class__.__name__ == '_SplitDataset' and _d.underlying_dataset.__class__.__name__ == 'MergedDataset': # necessary for CL print('\neval on merged datasets') merged_full_dataset = _d.underlying_dataset.datasets ratio = len(_d.keys) / len(_d.underlying_dataset) if int(len(_d) * ratio) == 0: ratio = 1. # print(ratio) # bs = # test_loaders = [build_dataloader(split_dataset(d, min(max(test_loader.batch_size, int(len(d) * ratio)), len(d)))[0], # TODO: this might be overlapped with train dataset # min(test_loader.batch_size, int(len(d) * ratio)), # test_loader.num_workers, False, None) for d in merged_full_dataset] test_loaders = [] for d in merged_full_dataset: n = int(len(d) * ratio) if n == 0: n = len(d) sub_dataset = split_dataset(d, min(max(test_loader.batch_size, n), len(d)))[0] loader = build_dataloader(sub_dataset, min(test_loader.batch_size, n), test_loader.num_workers, False, None) test_loaders += [loader] accs = [self.get_accuracy(loader) for loader in test_loaders] print(accs) return sum(accs) / len(accs) acc = 0 sample_num = 0 self.to_eval_mode() with torch.no_grad(): pbar = tqdm.tqdm(enumerate(test_loader), total=len(test_loader), dynamic_ncols=True, leave=False) for batch_index, (x, y) in pbar: for k, v in x.items(): if isinstance(v, torch.Tensor): x[k] = v.to(self.device) y = y.to(self.device) output = self.infer(x) pred = F.softmax(output, dim=1).argmax(dim=1) correct = torch.eq(pred, y).sum().item() acc += correct sample_num += len(y) # if batch_index == 0: # print(pred, y) pbar.set_description(f'cur_batch_total: {len(y)}, cur_batch_correct: {correct}, ' f'cur_batch_acc: {(correct / len(y)):.4f}') acc /= sample_num return acc