from typing import List from data.dataloader import build_dataloader # from methods.elasticdnn.api.online_model import ElasticDNN_OnlineModel from methods.elasticdnn.api.online_model_v2 import ElasticDNN_OnlineModel import torch import sys from torch import nn from methods.elasticdnn.api.model import ElasticDNN_OfflineSegFMModel, ElasticDNN_OfflineSegMDModel from methods.elasticdnn.api.algs.md_pretraining_wo_fbs import ElasticDNN_MDPretrainingWoFBSAlg from methods.elasticdnn.model.base import ElasticDNNUtil from methods.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util from methods.elasticdnn.pipeline.offline.fm_to_md.vit import FM_to_MD_ViT_Util from methods.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util from methods.elasticdnn.pipeline.offline.fm_lora.vit import FMLoRA_ViT_Util from methods.elasticdnn.model.vit import ElasticViTUtil from utils.common.file import ensure_dir from utils.dl.common.model import LayerActivation, get_module, get_parameter from utils.common.exp import save_models_dict_for_init, get_res_save_dir from data import build_scenario from utils.dl.common.loss import CrossEntropyLossSoft import torch.nn.functional as F from utils.dl.common.env import create_tbwriter import os from utils.common.log import logger from utils.common.data_record import write_json # from methods.shot.shot import OnlineShotModel from methods.feat_align.main import OnlineFeatAlignModel, FeatAlignAlg import tqdm from methods.feat_align.mmd import mmd_rbf from experiments.utils.elasticfm_da import init_online_model, elasticfm_da device = 'cuda' app_name = 'det' sd_sparsity = 0.6 settings = { 'involve_fm': True } scenario = build_scenario( source_datasets_name=['GTA5Det', 'SuperviselyPersonDet'], target_datasets_order=['CityscapesDet', 'BaiduPersonDet'] * 15, da_mode='close_set', data_dirs={ 'GTA5Det': '/data/zql/datasets/GTA-ls-copy/GTA5', 'SuperviselyPersonDet': '/data/zql/datasets/supervisely_person_full_20230635/Supervisely Person Dataset', 'CityscapesDet': '/data/zql/datasets/cityscape/', 'BaiduPersonDet': '/data/zql/datasets/baidu_person/clean_images/' }, ) from experiments.elasticdnn.vit_b_16.online_new.det.model import ElasticDNN_DetOnlineModel elasticfm_model = ElasticDNN_DetOnlineModel('cls', init_online_model( 'experiments/elasticdnn/vit_b_16/offline/fm_to_md/det/results/det_md_w_fbs_index.py/20230703/999994-214617-trial_in_card1/models/fm_best.pt', 'experiments/elasticdnn/vit_b_16/offline/fm_to_md/det/results/det_md_w_fbs_index.py/20230703/999994-214617-trial_in_card1/models/md_best.pt', 'det', __file__ ), device, { 'md_to_fm_alpha': 1.0, 'fm_to_md_alpha': 1.0 }, scenario.num_classes) da_alg = FeatAlignAlg from experiments.elasticdnn.vit_b_16.online_new.det.model import DetOnlineFeatAlignModel da_model = DetOnlineFeatAlignModel da_alg_hyp = {'CityscapesDet': { 'train_batch_size': 8, 'val_batch_size': 32, 'num_workers': 16, 'optimizer': 'AdamW', 'optimizer_args': {'lr': 1e-6, 'betas': [0.9, 0.999], 'weight_decay': 0.01}, 'scheduler': '', 'scheduler_args': {}, 'num_iters': 100, 'val_freq': 20, 'sd_sparsity': 0.6, 'feat_align_loss_weight': 0.3 }, 'BaiduPersonDet': { 'train_batch_size': 8, 'val_batch_size': 32, 'num_workers': 16, 'optimizer': 'AdamW', 'optimizer_args': {'lr': 1e-6, 'betas': [0.9, 0.999], 'weight_decay': 0.01}, 'scheduler': '', 'scheduler_args': {}, 'num_iters': 100, 'val_freq': 20, 'sd_sparsity': 0.6, 'feat_align_loss_weight': 0.3 }} elasticfm_da( [app_name], [scenario], [elasticfm_model], [da_alg], [da_alg_hyp], [da_model], device, settings, __file__, sys.argv[1] )