import os gpt_neo_series_id = '1.3B_ckpt' os.environ['gpt_neo_series_id'] = gpt_neo_series_id os.environ['CUDA_LAUNCH_BLOCKING'] = '1' # os.environ['CUDA_VISIBLE_DEVICES'] = '0, 1' import torch from methods.elasticdnn.api.model import ElasticDNN_OfflineSenClsFMModel, ElasticDNN_OfflineSenClsMDModel from methods.elasticdnn.api.algs.fm_lora import ElasticDNN_FMLoRAAlg from methods.elasticdnn.model.base import ElasticDNNUtil from methods.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util from gpt_neo import FMLoRA_GPT_Util, ElasticDNN_OfflineTextGenFMModel, collate_fn # from methods.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util # from methods.elasticdnn.pipeline.offline.fm_to_md.vit import FM_to_MD_ViT_Util # from methods.elasticdnn.model.vit import ElasticViTUtil from utils.dl.common.model import LayerActivation, get_module, get_parameter, set_module from utils.common.exp import save_models_dict_for_init, get_res_save_dir from data import build_gen_scenario from utils.common.log import logger import torch.nn.functional as F import sys class ElasticDNN_GPT_OfflineTextGenFMModel(ElasticDNN_OfflineTextGenFMModel): def generate_md_by_reducing_width(self, reducing_width_ratio, samples: torch.Tensor): # return FM_to_MD_ViT_Util().init_md_from_fm_by_reducing_width_with_perf_test(self.models_dict['main'], # reducing_width_ratio, samples) raise NotImplementedError def get_feature_hook(self) -> LayerActivation: return LayerActivation(get_module(self.models_dict['main'], 'classifier'), True, self.device) def get_elastic_dnn_util(self) -> ElasticDNNUtil: raise NotImplementedError def forward_to_get_task_loss(self, x, y): self.to_train_mode() return self.infer(x) def get_lora_util(self) -> FMLoRA_Util: return FMLoRA_GPT_Util() def get_task_head_params(self): head = get_module(self.models_dict['main'], 'model.lm_head') params_name = {k for k, v in head.named_parameters()} logger.info(f'task head params: {params_name}') return list(head.parameters()) class ElasticDNN_ViT_OfflineDetMDModel(ElasticDNN_OfflineSenClsMDModel): def get_feature_hook(self) -> LayerActivation: return LayerActivation(get_module(self.models_dict['main'], 'classifier'), True, self.device) def forward_to_get_task_loss(self, x, y, *args, **kwargs): self.to_train_mode() return F.cross_entropy(self.infer(x), y) if __name__ == '__main__': from utils.dl.common.env import set_random_seed set_random_seed(1) torch.cuda.set_device(0) # torch.cuda.device_count() # runned # gpt_neo_series_id = '125m_ckpt' # gpt_neo_series_id = '1.3B_ckpt' os.environ['gpt_neo_series_id'] = gpt_neo_series_id scenario = build_gen_scenario( source_datasets_name=['No_robots'], target_datasets_order=['No_robots'] * 1, # TODO da_mode='close_set', data_dirs={ 'No_robots': f'/data/zql/datasets/no_robots', }, ) # 2. init model device = 'cuda' from gpt_neo import GPTNeoForNLG, getTokenizer tokenizer = getTokenizer() model = GPTNeoForNLG(gpt_neo_series_id) model.model.resize_token_embeddings(len(tokenizer)) model.model.tie_weights() fm_models_dict_path = save_models_dict_for_init({ 'main': model }, __file__, 'gpt_neo_pretrained_text_gen') fm_model = ElasticDNN_GPT_OfflineTextGenFMModel('fm', fm_models_dict_path, device) # 3. init alg models = { 'fm': fm_model } fm_lora_alg = ElasticDNN_FMLoRAAlg(models, get_res_save_dir(__file__, "results")) # 4. run alg from utils.dl.common.lr_scheduler import get_linear_schedule_with_warmup fm_lora_alg.run(scenario, hyps={ 'launch_tbboard': False, 'samples_size': {'input_ids': torch.tensor([[ 101, 5672, 2033, 2011, 2151, 3793, 2017, 1005, 1040, 2066, 1012, 102]]).to(device), 'token_type_ids': torch.tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]).to(device), 'attention_mask': torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]).to(device), 'return_dict': False}, 'ab_r': 8, 'train_batch_size': 4, 'val_batch_size': 1, 'num_workers': 4, 'optimizer': 'AdamW', 'optimizer_args': {'lr': 5e-5, 'betas': [0.9, 0.999]}, 'scheduler': 'LambdaLR', 'scheduler_args': {'lr_lambda': get_linear_schedule_with_warmup(10000, 80000)}, 'num_iters': 80000, 'val_freq': 1000, # 'fm_lora_ckpt_path': 'experiments/elasticdnn/vit_b_16/offline/fm_lora/cls/results/cls.py/20230607/999995-234355-trial/models/fm_best.pt' }, collate_fn=collate_fn)