import torch from methods.elasticdnn.api.model import ElasticDNN_OfflineSenClsFMModel, ElasticDNN_OfflineSenClsMDModel from methods.elasticdnn.api.algs.fm_lora import ElasticDNN_FMLoRAAlg from methods.elasticdnn.api.algs.md_pretraining_wo_fbs import ElasticDNN_MDPretrainingWoFBSAlg from methods.elasticdnn.model.base import ElasticDNNUtil from methods.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util from bert import FMLoRA_Bert_Util from methods.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util from bert import FM_to_MD_Bert_Util from bert import ElasticBertUtil from utils.dl.common.model import LayerActivation, get_module, get_parameter, set_module from utils.common.exp import save_models_dict_for_init, get_res_save_dir from data import build_scenario from utils.common.log import logger import torch.nn.functional as F import sys class ElasticDNN_BERT_OfflineClsFMModel(ElasticDNN_OfflineSenClsFMModel): def generate_md_by_reducing_width(self, reducing_width_ratio, samples: torch.Tensor): return FM_to_MD_Bert_Util().init_md_from_fm_by_reducing_width_with_perf_test(self.models_dict['main'], reducing_width_ratio, samples) def get_feature_hook(self) -> LayerActivation: return LayerActivation(get_module(self.models_dict['main'], 'classifier'), True, self.device) def get_elastic_dnn_util(self) -> ElasticDNNUtil: return ElasticBertUtil() def forward_to_get_task_loss(self, x, y, *args, **kwargs): self.to_train_mode() pred = self.infer(x) return F.cross_entropy(pred, y) def get_lora_util(self) -> FMLoRA_Util: return FMLoRA_Bert_Util() def get_task_head_params(self): head = get_module(self.models_dict['main'], 'classifier') params_name = {k for k, v in head.named_parameters()} logger.info(f'task head params: {params_name}') return list(head.parameters()) class ElasticDNN_BERT_OfflineClsMDModel(ElasticDNN_OfflineSenClsMDModel): def get_feature_hook(self) -> LayerActivation: return LayerActivation(get_module(self.models_dict['main'], 'classifier'), True, self.device) def forward_to_get_task_loss(self, x, y, *args, **kwargs): self.to_train_mode() return self.models_dict['main'](x, y)['total_loss'] if __name__ == '__main__': from utils.dl.common.env import set_random_seed set_random_seed(1) # 1. init scenario # scenario = build_scenario( # source_datasets_name=['WI_Mask'], # target_datasets_order=['MakeML_Mask'] * 10, # da_mode='close_set', # data_dirs={ # 'COCO2017': '/data/zql/datasets/coco2017', # 'WI_Mask': '/data/zql/datasets/face_mask/WI/Medical mask/Medical mask/Medical Mask/images', # 'VOC2012': '/data/datasets/VOCdevkit/VOC2012/JPEGImages', # 'MakeML_Mask': '/data/zql/datasets/face_mask/make_ml/images' # }, # ) scenario = build_scenario( source_datasets_name=['HL5Domains-ApexAD2600Progressive', 'HL5Domains-CanonG3', 'HL5Domains-CreativeLabsNomadJukeboxZenXtra40GB', 'HL5Domains-NikonCoolpix4300'], target_datasets_order=['HL5Domains-Nokia6610'] * 1, # TODO da_mode='close_set', data_dirs={ **{k: f'/data/zql/datasets/nlp_asc_19_domains/dat/absa/Bing5Domains/asc/{k.split("-")[1]}' for k in ['HL5Domains-ApexAD2600Progressive', 'HL5Domains-CanonG3', 'HL5Domains-CreativeLabsNomadJukeboxZenXtra40GB', 'HL5Domains-NikonCoolpix4300', 'HL5Domains-Nokia6610']} }, ) # 2. init model device = 'cuda' from bert import bert_base_sen_cls cls_model = bert_base_sen_cls(num_classes=scenario.num_classes) # x = {'input_ids': torch.tensor([[ 101, 5672, 2033, 2011, 2151, 3793, 2017, 1005, 1040, 2066, 1012, 102]]).to(device), # 'token_type_ids': torch.tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]).to(device), # 'attention_mask': torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]).to(device), # 'return_dict': False} # print(cls_model(x)) fm_models_dict_path = save_models_dict_for_init({ 'main': cls_model }, __file__, 'fm_bert_pretrained_with_cls_head') fm_model = ElasticDNN_BERT_OfflineClsFMModel('fm', fm_models_dict_path, device) # 3. init alg models = { 'fm': fm_model } fm_lora_alg = ElasticDNN_FMLoRAAlg(models, get_res_save_dir(__file__, 'result')) from PIL import ImageFile ImageFile.LOAD_TRUNCATED_IMAGES = True # 4. run alg from utils.dl.common.lr_scheduler import get_linear_schedule_with_warmup fm_lora_alg.run(scenario, hyps={ 'launch_tbboard': False, 'samples_size': {'input_ids': torch.tensor([[ 101, 5672, 2033, 2011, 2151, 3793, 2017, 1005, 1040, 2066, 1012, 102]]).to(device), 'token_type_ids': torch.tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]).to(device), 'attention_mask': torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]).to(device), 'return_dict': False}, 'ab_r': 8, 'train_batch_size': 8, 'val_batch_size': 16, 'num_workers': 16, 'optimizer': 'AdamW', 'optimizer_args': {'lr': 1e-4, 'betas': [0.9, 0.999]}, 'scheduler': 'LambdaLR', 'scheduler_args': {'lr_lambda': get_linear_schedule_with_warmup(10000, 310000)}, 'num_iters': 50000, 'val_freq': 400, # 'fm_lora_ckpt_path': 'experiments/elasticdnn/vit_b_16/offline/fm_lora/cls/results/cls.py/20230607/999995-234355-trial/models/fm_best.pt' })