import os #bert_path should be the path of the roberta-base dir os.environ['bert_path'] = '/data/zql/concept-drift-in-edge-projects/UniversalElasticNet/new_impl/nlp/roberta/sentiment-classification/roberta-base' import torch from methods.elasticdnn.api.model import ElasticDNN_OfflineSenClsFMModel, ElasticDNN_OfflineSenClsMDModel from methods.elasticdnn.api.algs.fm_lora import ElasticDNN_FMLoRAAlg from methods.elasticdnn.model.base import ElasticDNNUtil from methods.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util # from methods.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util # from methods.elasticdnn.pipeline.offline.fm_to_md.vit import FM_to_MD_ViT_Util # from methods.elasticdnn.model.vit import ElasticViTUtil from roberta import FMLoRA_Roberta_Util, RobertaForSenCls from utils.dl.common.model import LayerActivation, get_module, get_parameter, set_module from utils.common.exp import save_models_dict_for_init, get_res_save_dir from data import build_scenario from utils.common.log import logger import torch.nn.functional as F import sys class ElasticDNN_Roberta_OfflineSenClsFMModel(ElasticDNN_OfflineSenClsFMModel): def generate_md_by_reducing_width(self, reducing_width_ratio, samples: torch.Tensor): # return FM_to_MD_ViT_Util().init_md_from_fm_by_reducing_width_with_perf_test(self.models_dict['main'], # reducing_width_ratio, samples) raise NotImplementedError def get_feature_hook(self) -> LayerActivation: return LayerActivation(get_module(self.models_dict['main'], 'classifier'), True, self.device) def get_elastic_dnn_util(self) -> ElasticDNNUtil: raise NotImplementedError def forward_to_get_task_loss(self, x, y): self.to_train_mode() pred = self.infer(x) return F.cross_entropy(pred, y) def get_lora_util(self) -> FMLoRA_Util: return FMLoRA_Roberta_Util() def get_task_head_params(self): head = get_module(self.models_dict['main'], 'classifier') params_name = {k for k, v in head.named_parameters()} logger.info(f'task head params: {params_name}') return list(head.parameters()) if __name__ == '__main__': from utils.dl.common.env import set_random_seed set_random_seed(1) torch.cuda.set_device(1) scenario = build_scenario( source_datasets_name=['HL5Domains-ApexAD2600Progressive', 'HL5Domains-CanonG3', 'HL5Domains-CreativeLabsNomadJukeboxZenXtra40GB'], target_datasets_order=['HL5Domains-Nokia6610', 'HL5Domains-NikonCoolpix4300'] * 1, # TODO da_mode='close_set', data_dirs={ **{k: f'/data/zql/datasets/nlp_asc_19_domains/dat/absa/Bing5Domains/asc/{k.split("-")[1]}' for k in ['HL5Domains-ApexAD2600Progressive', 'HL5Domains-CanonG3', 'HL5Domains-CreativeLabsNomadJukeboxZenXtra40GB', 'HL5Domains-NikonCoolpix4300', 'HL5Domains-Nokia6610']} }, ) # 2. init model device = 'cuda' model = RobertaForSenCls(num_classes=scenario.num_classes) fm_models_dict_path = save_models_dict_for_init({ 'main': model }, __file__, 'roberta_pretrained_sen_cls') fm_model = ElasticDNN_Roberta_OfflineSenClsFMModel('fm', fm_models_dict_path, device) # 3. init alg models = { 'fm': fm_model } fm_lora_alg = ElasticDNN_FMLoRAAlg(models, get_res_save_dir(__file__, "results")) # 4. run alg from utils.dl.common.lr_scheduler import get_linear_schedule_with_warmup fm_lora_alg.run(scenario, hyps={ 'launch_tbboard': False, 'samples_size': {'input_ids': torch.tensor([[ 101, 5672, 2033, 2011, 2151, 3793, 2017, 1005, 1040, 2066, 1012, 102]]).to(device), 'token_type_ids': torch.tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]).to(device), 'attention_mask': torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]).to(device), 'return_dict': False}, 'ab_r': 8, 'train_batch_size': 32, 'val_batch_size': 128, 'num_workers': 32, 'optimizer': 'AdamW', 'optimizer_args': {'lr': 1e-4, 'betas': [0.9, 0.999]}, 'scheduler': 'LambdaLR', 'scheduler_args': {'lr_lambda': get_linear_schedule_with_warmup(10000, 80000)}, 'num_iters': 80000, 'val_freq': 1000, })