import enum from ..data_aug import one_d_image_test_aug, one_d_image_train_aug from ..ab_dataset import ABDataset from ..dataset_split import train_val_split from torchvision.datasets import EMNIST as RawEMNIST import string import numpy as np from typing import Dict, List, Optional from torchvision.transforms import Compose from ..registery import dataset_register @dataset_register( name='EMNIST', classes=list(string.digits + string.ascii_letters), class_aliases=[], task_type='Image Classification', object_type='Digit and Letter', shift_type=None ) class EMNIST(ABDataset): def create_dataset(self, root_dir: str, split: str, transform: Optional[Compose], classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]): if transform is None: transform = one_d_image_train_aug() if split == 'train' else one_d_image_test_aug() self.transform = transform dataset = RawEMNIST(root_dir, 'byclass', train=split != 'test', transform=transform, download=True) dataset.targets = np.asarray(dataset.targets) if len(ignore_classes) > 0: for ignore_class in ignore_classes: dataset.data = dataset.data[dataset.targets != classes.index(ignore_class)] dataset.targets = dataset.targets[dataset.targets != classes.index(ignore_class)] if idx_map is not None: # note: the code below seems correct but has bug! # for old_idx, new_idx in idx_map.items(): # dataset.targets[dataset.targets == old_idx] = new_idx for ti, t in enumerate(dataset.targets): dataset.targets[ti] = idx_map[t] if split != 'test': dataset = train_val_split(dataset, split) return dataset