from ..data_aug import cifar_like_image_train_aug, cifar_like_image_test_aug, imagenet_like_image_test_aug, imagenet_like_image_train_aug from ..ab_dataset import ABDataset from ..dataset_split import train_val_test_split from torchvision.datasets import ImageFolder from typing import Dict, List, Optional from torchvision.transforms import Compose from utils.common.others import HiddenPrints from ..dataset_cache import get_dataset_cache_path, read_cached_dataset_status, cache_dataset_status import os from ..registery import dataset_register @dataset_register( name='SYNSIGNS', classes=[f'{i:05d}' for i in range(42)], task_type='Image Classification', object_type='Traffic Sign', class_aliases=[], shift_type=None ) class SYNSIGNS(ABDataset): def create_dataset(self, root_dir: str, split: str, transform: Optional[Compose], classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]): if transform is None: transform = imagenet_like_image_train_aug() if split == 'train' else imagenet_like_image_test_aug() self.transform = transform dataset = ImageFolder(root_dir, transform=transform) cache_file_path = get_dataset_cache_path(root_dir, classes, ignore_classes, idx_map) if os.path.exists(cache_file_path): dataset.samples = read_cached_dataset_status(cache_file_path, 'SYNSIGNS-' + split) else: if len(ignore_classes) > 0: ignore_classes_idx = [classes.index(c) for c in ignore_classes] dataset.samples = [s for s in dataset.samples if s[1] not in ignore_classes_idx] if idx_map is not None: dataset.samples = [(s[0], idx_map[s[1]]) if s[1] in idx_map.keys() else s for s in dataset.samples] cache_dataset_status(dataset.samples, cache_file_path, 'SYNSIGNS-' + split) dataset = train_val_test_split(dataset, split) return dataset