rnlduatm commited on
Commit
d8e88f0
Β·
1 Parent(s): 895d3e8

Update space

Browse files
Files changed (2) hide show
  1. Text2Long_text.py +37 -0
  2. app.py +5 -33
Text2Long_text.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
+
4
+ # 1. λ””λ°”μ΄μŠ€ μ„€μ •
5
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
6
+
7
+ # 2. ν•œκ΅­μ–΄ GPT-2 λͺ¨λΈκ³Ό ν† ν¬λ‚˜μ΄μ € λ‘œλ“œ
8
+ tokenizer = AutoTokenizer.from_pretrained("skt/kogpt2-base-v2")
9
+ model = AutoModelForCausalLM.from_pretrained("skt/kogpt2-base-v2").to(device)
10
+
11
+ # 3. ν•œκ΅­μ–΄ μ†Œμ„€ 생성 ν•¨μˆ˜
12
+ def generate_korean_story(prompt, max_length=300):
13
+ input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
14
+
15
+ outputs = model.generate(
16
+ input_ids,
17
+ max_length=max_length,
18
+ min_length=100,
19
+ do_sample=True,
20
+ temperature=0.9,
21
+ top_k=50,
22
+ top_p=0.95,
23
+ repetition_penalty=1.2,
24
+ no_repeat_ngram_size=3,
25
+ eos_token_id=tokenizer.eos_token_id
26
+ )
27
+
28
+ story = tokenizer.decode(outputs[0], skip_special_tokens=True)
29
+ return story
30
+
31
+ # 4. μ‹€ν–‰
32
+ if __name__ == "__main__":
33
+ user_prompt = input("πŸ“œ μ†Œμ„€μ˜ μ‹œμž‘ λ¬Έμž₯을 μž…λ ₯ν•˜μ„Έμš” (ν•œκ΅­μ–΄): ")
34
+ result = generate_korean_story(user_prompt, max_length=500)
35
+
36
+ print("\nπŸ“– μƒμ„±λœ ν•œκ΅­μ–΄ μ†Œμ„€:\n")
37
+ print(result)
app.py CHANGED
@@ -1,37 +1,9 @@
1
- import torch
2
- from transformers import AutoTokenizer, AutoModelForCausalLM
3
 
4
- # 1. λ””λ°”μ΄μŠ€ μ„€μ •
5
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
6
 
7
- # 2. ν•œκ΅­μ–΄ GPT-2 λͺ¨λΈκ³Ό ν† ν¬λ‚˜μ΄μ € λ‘œλ“œ
8
- tokenizer = AutoTokenizer.from_pretrained("skt/kogpt2-base-v2")
9
- model = AutoModelForCausalLM.from_pretrained("skt/kogpt2-base-v2").to(device)
10
 
11
- # 3. ν•œκ΅­μ–΄ μ†Œμ„€ 생성 ν•¨μˆ˜
12
- def generate_korean_story(prompt, max_length=300):
13
- input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
14
 
15
- outputs = model.generate(
16
- input_ids,
17
- max_length=max_length,
18
- min_length=100,
19
- do_sample=True,
20
- temperature=0.9,
21
- top_k=50,
22
- top_p=0.95,
23
- repetition_penalty=1.2,
24
- no_repeat_ngram_size=3,
25
- eos_token_id=tokenizer.eos_token_id
26
- )
27
-
28
- story = tokenizer.decode(outputs[0], skip_special_tokens=True)
29
- return story
30
-
31
- # 4. μ‹€ν–‰
32
- if __name__ == "__main__":
33
- user_prompt = input("πŸ“œ μ†Œμ„€μ˜ μ‹œμž‘ λ¬Έμž₯을 μž…λ ₯ν•˜μ„Έμš” (ν•œκ΅­μ–΄): ")
34
- result = generate_korean_story(user_prompt, max_length=500)
35
-
36
- print("\nπŸ“– μƒμ„±λœ ν•œκ΅­μ–΄ μ†Œμ„€:\n")
37
- print(result)
 
1
+ import gradio as gr
 
2
 
 
 
3
 
4
+ def greet(name):
5
+ return "Helloasdfasdf " + name + "!!"
 
6
 
 
 
 
7
 
8
+ demo = gr.Interface(fn=greet, inputs="text", outputs="text")
9
+ demo.launch()