Spaces:
Running
Running
omkarenator
commited on
Commit
·
e384d00
1
Parent(s):
ccfaf0a
add distill-style authors, front-matter
Browse files
main.py
CHANGED
@@ -39,28 +39,86 @@ app, rt = fast_app(
|
|
39 |
)
|
40 |
|
41 |
|
42 |
-
front_matter =
|
43 |
-
|
44 |
-
|
45 |
-
"
|
46 |
-
"description": "",
|
47 |
-
"published": "",
|
48 |
-
"affiliation": {},
|
49 |
"authors": [
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
],
|
55 |
-
"katex": {
|
56 |
-
|
57 |
-
{"left": "$$", "right": "$$", "display": false}
|
58 |
-
]
|
59 |
-
}
|
60 |
-
}
|
61 |
-
</script>
|
62 |
-
</d-front-matter>
|
63 |
-
"""
|
64 |
|
65 |
|
66 |
def read_bibs():
|
@@ -78,6 +136,8 @@ def get():
|
|
78 |
|
79 |
@app.get("/")
|
80 |
def main():
|
|
|
|
|
81 |
return Div(
|
82 |
D_title(
|
83 |
H1(
|
@@ -91,7 +151,14 @@ def main():
|
|
91 |
cls="main-plot-container l-page",
|
92 |
),
|
93 |
),
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
D_article(
|
96 |
D_contents(
|
97 |
Nav(
|
@@ -358,7 +425,6 @@ new_dataset_comparison1 = pd.DataFrame(
|
|
358 |
"EuroParl",
|
359 |
"StackExchange",
|
360 |
"Code",
|
361 |
-
|
362 |
],
|
363 |
"TxT360": [
|
364 |
"99",
|
@@ -451,7 +517,7 @@ new_dataset_comparison1 = pd.DataFrame(
|
|
451 |
"",
|
452 |
" ",
|
453 |
"",
|
454 |
-
|
455 |
"-",
|
456 |
"-",
|
457 |
"-",
|
@@ -473,16 +539,18 @@ new_dataset_comparison1 = pd.DataFrame(
|
|
473 |
"Included",
|
474 |
],
|
475 |
}
|
476 |
-
)
|
477 |
|
478 |
styled_table = (
|
479 |
new_dataset_comparison1.style.applymap(
|
480 |
lambda _: "background-color: #E1EEDB", # Green background for col 1
|
481 |
-
subset=pd.IndexSlice[:, "TxT360"]
|
482 |
)
|
483 |
.applymap(
|
484 |
lambda _: "background-color: white", # White background for all other columns
|
485 |
-
subset=pd.IndexSlice[
|
|
|
|
|
486 |
)
|
487 |
.hide(axis="index") # Hide the row index
|
488 |
)
|
@@ -762,7 +830,14 @@ styled_table = (
|
|
762 |
.set_properties(**{"text-align": "center"}) # Center the text in all cells
|
763 |
.set_table_styles(
|
764 |
[
|
765 |
-
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
766 |
]
|
767 |
)
|
768 |
.hide(axis="index") # Hide the row index
|
@@ -770,7 +845,9 @@ styled_table = (
|
|
770 |
|
771 |
table_html_data = styled_table._repr_html_()
|
772 |
# table_html_data = dataset_sources.to_html(index=False, border=0)
|
773 |
-
table_div_data = Div(
|
|
|
|
|
774 |
|
775 |
|
776 |
@app.get("/intro")
|
@@ -779,15 +856,24 @@ def intro():
|
|
779 |
Section(
|
780 |
H2("About TxT360"),
|
781 |
P(
|
782 |
-
B(
|
|
|
|
|
783 |
),
|
784 |
P(
|
785 |
"Building on top of the prior studies on pre-training data,",
|
786 |
-
D_cite(bibtex_key="refinedweb"),
|
787 |
-
"
|
|
|
|
|
|
|
788 |
),
|
789 |
P(
|
790 |
-
"Metadata is stored to recover the raw distribution for each dataset, enabling fine-grained control to create data distributions and corpus of desired size. As an example, we present one simple upsampling scheme that takes into account the duplication counts, resulting in a 15~16 trillion token corpus, outperforming FineWeb and our non-upsampling baselines, on diverse evaluations. Unlike DCLM",
|
|
|
|
|
|
|
|
|
791 |
),
|
792 |
P(
|
793 |
"We documented all implementation details in this blog post and are open sourcing the code. Examples of each filter and rationale supporting each decision are included."
|
@@ -800,14 +886,16 @@ def intro():
|
|
800 |
"TxT360 is the first dataset to combine both web and curated data sources commonly used in pretraining."
|
801 |
),
|
802 |
new_table_div_1,
|
803 |
-
#table_div_1,
|
804 |
-
#table_div_2,
|
805 |
P(
|
806 |
"In pretraining, it is common to combine web data and curated sources (cite). Web data is included to provide a vast quantity of long tail and diverse data, while curated datasets are often information rich and provide the 'deep-dive' domain information. Combining both datasets plays a critical role for effective LLM pre-training. By integrating the reach of web data with the quality of curated sources, TxT360 meets and surpasses the rigorous standards required for state-of-the-art LLM pre-training. See Results section below."
|
807 |
),
|
808 |
-
P(
|
809 |
-
|
810 |
-
|
|
|
|
|
811 |
id="section2",
|
812 |
),
|
813 |
Section(
|
@@ -825,10 +913,10 @@ def intro():
|
|
825 |
P(
|
826 |
"We provide details and context for the choices behind TxT360 in the respective Web Data Processing and Curated Source Processing section. A deep dive describing the deduplication process can be found in the Commonly Applied Processing Steps section."
|
827 |
),
|
828 |
-
#Img(src="images/pipeline.png", height="300", width="600"),
|
829 |
-
#P(
|
830 |
# "Figure 1: Data processing pipeline. All the steps are adopted for processing web data while the yellow blocks are adopted for processing curated sources."
|
831 |
-
#),
|
832 |
id="section3",
|
833 |
),
|
834 |
id="inner-text",
|
|
|
39 |
)
|
40 |
|
41 |
|
42 |
+
front_matter = {
|
43 |
+
"title": "TxT360",
|
44 |
+
"description": "A globally deduplicated dataset for LLM pretraining",
|
45 |
+
"published": "October 7, 2024",
|
|
|
|
|
|
|
46 |
"authors": [
|
47 |
+
{
|
48 |
+
"author": "Liping Tang",
|
49 |
+
"authorURL": "https://huggingface.co/Liping",
|
50 |
+
"affiliation": "MBZUAI",
|
51 |
+
"affiliationURL": "LLM360.ai",
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"author": "Nikhil Ranjan",
|
55 |
+
"authorURL": "https://huggingface.co/NikhilRanjan",
|
56 |
+
"affiliation": "MBZUAI",
|
57 |
+
"affiliationURL": "",
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"author": "Omkar Pangarkar",
|
61 |
+
"authorURL": "https://huggingface.co/omkarenator",
|
62 |
+
"affiliation": "Petuum, Inc.",
|
63 |
+
"affiliationURL": "",
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"author": "Zhen Wang",
|
67 |
+
"authorURL": "https://huggingface.co/ZhenWang",
|
68 |
+
"affiliation": "MBZUAI",
|
69 |
+
"affiliationURL": "",
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"author": "An Li",
|
73 |
+
"authorURL": "https://huggingface.co/AnLi",
|
74 |
+
"affiliation": "",
|
75 |
+
"affiliationURL": "",
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"author": "Zhoujun Cheng",
|
79 |
+
"authorURL": "https://huggingface.co/ZhoujunCheng",
|
80 |
+
"affiliation": "",
|
81 |
+
"affiliationURL": "",
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"author": "Suqi Sun",
|
85 |
+
"authorURL": "https://huggingface.co/SuqiSun",
|
86 |
+
"affiliation": "Petuum, Inc.",
|
87 |
+
"affiliationURL": "",
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"author": "Cun Mu",
|
91 |
+
"authorURL": "https://huggingface.co/CunMu",
|
92 |
+
"affiliation": "",
|
93 |
+
"affiliationURL": "",
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"author": "Victor Miller",
|
97 |
+
"authorURL": "https://huggingface.co/VictorMiller",
|
98 |
+
"affiliation": "",
|
99 |
+
"affiliationURL": "",
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"author": "Yue Peng",
|
103 |
+
"authorURL": "https://huggingface.co/YuePeng",
|
104 |
+
"affiliation": "",
|
105 |
+
"affiliationURL": "",
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"author": "Eric P. Xing",
|
109 |
+
"authorURL": "https://huggingface.co/EricXing",
|
110 |
+
"affiliation": "MBZUAI & CMU",
|
111 |
+
"affiliationURL": "https://www.mbzuai.ac.ae/ & https://www.cs.cmu.edu/",
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"author": "Zhengzhong Liu",
|
115 |
+
"authorURL": "https://huggingface.co/ZhengzhongLiu",
|
116 |
+
"affiliation": "",
|
117 |
+
"affiliationURL": "",
|
118 |
+
},
|
119 |
],
|
120 |
+
"katex": {"delimiters": [{"left": "$$", "right": "$$", "display": "false"}]},
|
121 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
|
124 |
def read_bibs():
|
|
|
136 |
|
137 |
@app.get("/")
|
138 |
def main():
|
139 |
+
from fasthtml.xtend import Script
|
140 |
+
|
141 |
return Div(
|
142 |
D_title(
|
143 |
H1(
|
|
|
151 |
cls="main-plot-container l-page",
|
152 |
),
|
153 |
),
|
154 |
+
D_byline(),
|
155 |
+
D_front_matter(
|
156 |
+
Script(
|
157 |
+
json.dumps(front_matter),
|
158 |
+
id="distill-front-matter",
|
159 |
+
type="text/json",
|
160 |
+
)
|
161 |
+
),
|
162 |
D_article(
|
163 |
D_contents(
|
164 |
Nav(
|
|
|
425 |
"EuroParl",
|
426 |
"StackExchange",
|
427 |
"Code",
|
|
|
428 |
],
|
429 |
"TxT360": [
|
430 |
"99",
|
|
|
517 |
"",
|
518 |
" ",
|
519 |
"",
|
520 |
+
"Included",
|
521 |
"-",
|
522 |
"-",
|
523 |
"-",
|
|
|
539 |
"Included",
|
540 |
],
|
541 |
}
|
542 |
+
)
|
543 |
|
544 |
styled_table = (
|
545 |
new_dataset_comparison1.style.applymap(
|
546 |
lambda _: "background-color: #E1EEDB", # Green background for col 1
|
547 |
+
subset=pd.IndexSlice[:, "TxT360"],
|
548 |
)
|
549 |
.applymap(
|
550 |
lambda _: "background-color: white", # White background for all other columns
|
551 |
+
subset=pd.IndexSlice[
|
552 |
+
:, new_dataset_comparison1.columns.difference(["TxT360"])
|
553 |
+
], # Apply to all columns except "TxT360"
|
554 |
)
|
555 |
.hide(axis="index") # Hide the row index
|
556 |
)
|
|
|
830 |
.set_properties(**{"text-align": "center"}) # Center the text in all cells
|
831 |
.set_table_styles(
|
832 |
[
|
833 |
+
{
|
834 |
+
"selector": "table",
|
835 |
+
"props": [
|
836 |
+
("margin-left", "20%"),
|
837 |
+
("margin-right", "auto"),
|
838 |
+
("width", "100%"),
|
839 |
+
],
|
840 |
+
}, # Center the table and adjust width
|
841 |
]
|
842 |
)
|
843 |
.hide(axis="index") # Hide the row index
|
|
|
845 |
|
846 |
table_html_data = styled_table._repr_html_()
|
847 |
# table_html_data = dataset_sources.to_html(index=False, border=0)
|
848 |
+
table_div_data = Div(
|
849 |
+
NotStr(table_html_data), style="margin-left: auto; width: 80%; align: center;"
|
850 |
+
)
|
851 |
|
852 |
|
853 |
@app.get("/intro")
|
|
|
856 |
Section(
|
857 |
H2("About TxT360"),
|
858 |
P(
|
859 |
+
B(
|
860 |
+
"We introduce TxT360 (Trillion eXtracted Text) the first dataset to globally deduplicate 99 CommonCrawl snapshots and 14 commonly used non-web data sources (e.g. FreeLaw, PG-19, etc.) providing pretraining teams with a recipe to easily adjust data weighting and train the most performant models."
|
861 |
+
)
|
862 |
),
|
863 |
P(
|
864 |
"Building on top of the prior studies on pre-training data,",
|
865 |
+
D_cite(bibtex_key="refinedweb"),
|
866 |
+
D_cite(bibtex_key="fineweb"),
|
867 |
+
D_cite(bibtex_key="c4"),
|
868 |
+
D_cite(bibtex_key="muennighoff2023scaling"),
|
869 |
+
"TxT360 carefully implements data processing steps including extraction, filtering, deduplication, personally identifiable information removal, and other steps.",
|
870 |
),
|
871 |
P(
|
872 |
+
"Metadata is stored to recover the raw distribution for each dataset, enabling fine-grained control to create data distributions and corpus of desired size. As an example, we present one simple upsampling scheme that takes into account the duplication counts, resulting in a 15~16 trillion token corpus, outperforming FineWeb and our non-upsampling baselines, on diverse evaluations. Unlike DCLM",
|
873 |
+
D_cite(bibtex_key="dclm"),
|
874 |
+
"and RedPajama V2,",
|
875 |
+
D_cite(bibtex_key="redpajama-v2"),
|
876 |
+
"we present the final deduplicated dataset that is ready to go.",
|
877 |
),
|
878 |
P(
|
879 |
"We documented all implementation details in this blog post and are open sourcing the code. Examples of each filter and rationale supporting each decision are included."
|
|
|
886 |
"TxT360 is the first dataset to combine both web and curated data sources commonly used in pretraining."
|
887 |
),
|
888 |
new_table_div_1,
|
889 |
+
# table_div_1,
|
890 |
+
# table_div_2,
|
891 |
P(
|
892 |
"In pretraining, it is common to combine web data and curated sources (cite). Web data is included to provide a vast quantity of long tail and diverse data, while curated datasets are often information rich and provide the 'deep-dive' domain information. Combining both datasets plays a critical role for effective LLM pre-training. By integrating the reach of web data with the quality of curated sources, TxT360 meets and surpasses the rigorous standards required for state-of-the-art LLM pre-training. See Results section below."
|
893 |
),
|
894 |
+
P(
|
895 |
+
"** TxT360 does not include code. This decision was made due to the perceived low duplication code with other sources."
|
896 |
+
),
|
897 |
+
# P("Table 2: Basic TxT360 Statistics."),
|
898 |
+
# table_div_data,
|
899 |
id="section2",
|
900 |
),
|
901 |
Section(
|
|
|
913 |
P(
|
914 |
"We provide details and context for the choices behind TxT360 in the respective Web Data Processing and Curated Source Processing section. A deep dive describing the deduplication process can be found in the Commonly Applied Processing Steps section."
|
915 |
),
|
916 |
+
# Img(src="images/pipeline.png", height="300", width="600"),
|
917 |
+
# P(
|
918 |
# "Figure 1: Data processing pipeline. All the steps are adopted for processing web data while the yellow blocks are adopted for processing curated sources."
|
919 |
+
# ),
|
920 |
id="section3",
|
921 |
),
|
922 |
id="inner-text",
|