Spaces:
Running
Running
File size: 1,903 Bytes
c173eef 6eb17e2 c173eef 6eb17e2 c173eef 911c9b4 c173eef 911c9b4 c173eef 911c9b4 c173eef 911c9b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
import os
import streamlit as st
import json
import tarfile
st.set_page_config(layout="wide")
PARENT_DIR: str = os.path.join(os.path.dirname(os.path.abspath(__file__)))
EVAL_DIR: str = os.path.join(PARENT_DIR, "eval-results")
st.title("K2 Evaluation Gallery")
st.markdown("""The K2 gallery allows one to browse the output of various evaluations on intermediate K2 checkpoints, which provides an intuitive understanding on how the model develops and improves over time.""")
with st.sidebar:
html = f"<img src='https://www.llm360.ai/images/logo-highres.png' width='100' /><img src='https://huggingface.co/spaces/LLM360/k2-eval-gallery/raw/main/k2-logo.svg' width='100' />"
st.markdown(html, unsafe_allow_html=True)
metric = st.radio(
"Choose a metric", options=os.listdir(os.path.join(EVAL_DIR))
)
n_shot = st.radio(
"Selece an n-shot number", os.listdir(os.path.join(EVAL_DIR, metric))
)
col1, col2 = st.columns(2)
def render_column(col_label):
st.header(f"Checkpoint {col_label}")
ckpt = st.select_slider('Select a checkpoint', sorted(os.listdir(os.path.join(EVAL_DIR, metric, n_shot))), key=col_label + '1')
st.write(f'Veiwing Evaluation Results for Checkpoint: `{ckpt}`')
file = st.selectbox("Select a file", sorted(f_name[:-len(".tar.gz")] for f_name in os.listdir(os.path.join(EVAL_DIR, metric, n_shot, ckpt))), key=col_label + '2')
file += ".tar.gz"
with tarfile.open(os.path.join(EVAL_DIR, metric, n_shot, ckpt, file), "r:gz") as tar:
f = tar.extractfile(tar.next())
eval_json = json.load(f)
if isinstance(eval_json, list):
doc_id = st.slider("Select a document id", 0, len(eval_json) - 1, 0, 1, key=col_label + '3')
st.json(eval_json[doc_id])
else:
st.json(eval_json)
f.close()
with col1:
render_column('A')
with col2:
render_column('B')
|