Spaces:
Runtime error
Runtime error
File size: 5,692 Bytes
29232b4 5456854 b58bc4a 5456854 3d1964a 5456854 cf13d53 5456854 3d1964a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
#
# Copyright (C) Hadad <[email protected]>
# All rights reserved.
#
# This code is made available under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License.
# You are free to share and adapt the code for non-commercial purposes, as long as you provide appropriate credit,
# do not use it for commercial purposes, and distribute your contributions under the same license.
#
# Contributions can be made by directly submitting pull requests.
#
# For inquiries or permission requests, please contact [email protected].
#
# License: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
#
import gradio as gr
import requests
import json
import os
from dotenv import load_dotenv
import threading
import random
import time
LINUX_SERVER_HOST = os.getenv("LINUX_SERVER_HOST")
LINUX_SERVER_PROVIDER_KEY = [key for key in json.loads(os.getenv("LINUX_SERVER_PROVIDER_KEY", "[]")) if key]
AI_TYPES = {f"AI_TYPE_{i}": os.getenv(f"AI_TYPE_{i}") for i in range(1, 6)}
RESPONSES = {f"RESPONSE_{i}": os.getenv(f"RESPONSE_{i}") for i in range(1, 10)}
MODEL_MAPPING = json.loads(os.getenv("MODEL_MAPPING", "{}"))
MODEL_CONFIG = json.loads(os.getenv("MODEL_CONFIG", "{}"))
MODEL_CHOICES = list(MODEL_MAPPING.values())
DEFAULT_CONFIG = json.loads(os.getenv("DEFAULT_CONFIG", "{}"))
META_TAGS = os.getenv("META_TAGS")
stop_event = threading.Event()
session = requests.Session()
def get_model_key(display_name):
return next((k for k, v in MODEL_MAPPING.items() if v == display_name), MODEL_CHOICES[0])
def simulate_streaming_response(text):
for line in text.splitlines():
if stop_event.is_set():
return
yield line + "\n"
time.sleep(0.05)
def chat_with_model(history, user_input, selected_model_display):
if stop_event.is_set():
yield RESPONSES["RESPONSE_1"]
return
if not LINUX_SERVER_PROVIDER_KEY or not LINUX_SERVER_HOST:
yield RESPONSES["RESPONSE_3"]
return
selected_model = get_model_key(selected_model_display)
model_config = MODEL_CONFIG.get(selected_model, DEFAULT_CONFIG)
messages = [{"role": "user", "content": user} for user, _ in history]
messages += [{"role": "assistant", "content": assistant} for _, assistant in history if assistant]
messages.append({"role": "user", "content": user_input})
data = {"model": selected_model, "messages": messages, **model_config}
random.shuffle(LINUX_SERVER_PROVIDER_KEY)
for api_key in LINUX_SERVER_PROVIDER_KEY[:2]:
if stop_event.is_set():
yield RESPONSES["RESPONSE_1"]
return
try:
response = session.post(LINUX_SERVER_HOST, json=data, headers={"Authorization": f"Bearer {api_key}"})
if stop_event.is_set():
yield RESPONSES["RESPONSE_1"]
return
if response.status_code < 400:
ai_text = response.json().get("choices", [{}])[0].get("message", {}).get("content", RESPONSES["RESPONSE_2"])
yield from simulate_streaming_response(ai_text)
return
except requests.exceptions.RequestException:
continue
yield RESPONSES["RESPONSE_3"]
def respond(user_input, history, selected_model_display):
if not user_input.strip():
yield history, gr.update(value=""), gr.update(visible=False, interactive=False), gr.update(visible=True)
return
stop_event.clear()
history.append([user_input, RESPONSES["RESPONSE_8"]])
yield history, gr.update(value=""), gr.update(visible=False), gr.update(visible=True)
ai_response = ""
for chunk in chat_with_model(history, user_input, selected_model_display):
if stop_event.is_set():
session.close()
history[-1][1] = RESPONSES["RESPONSE_1"]
yield history, gr.update(value=""), gr.update(visible=True), gr.update(visible=False)
return
ai_response += chunk
history[-1][1] = ai_response
yield history, gr.update(value=""), gr.update(visible=False), gr.update(visible=True)
session.close()
yield history, gr.update(value=""), gr.update(visible=True), gr.update(visible=False)
def stop_response():
stop_event.set()
session.close()
def change_model(new_model_display):
return [], new_model_display
def check_send_button_enabled(msg):
return gr.update(visible=bool(msg.strip()), interactive=bool(msg.strip()))
with gr.Blocks(fill_height=True, fill_width=True, title=AI_TYPES["AI_TYPE_4"], head=META_TAGS) as demo:
user_history = gr.State([])
selected_model = gr.State(MODEL_CHOICES[0])
chatbot = gr.Chatbot(label=AI_TYPES["AI_TYPE_1"], show_copy_button=True, show_share_button=False, scale=1, elem_id=AI_TYPES["AI_TYPE_2"])
model_dropdown = gr.Dropdown(label=AI_TYPES["AI_TYPE_3"], show_label=False, choices=MODEL_CHOICES, value=MODEL_CHOICES[0], interactive=True)
msg = gr.Textbox(label=RESPONSES["RESPONSE_4"], show_label=False, scale=0, placeholder=RESPONSES["RESPONSE_5"])
with gr.Row():
send_btn = gr.Button(RESPONSES["RESPONSE_6"], visible=True, interactive=False)
stop_btn = gr.Button(RESPONSES["RESPONSE_7"], variant=RESPONSES["RESPONSE_9"], visible=False)
model_dropdown.change(fn=change_model, inputs=[model_dropdown], outputs=[user_history, selected_model])
send_btn.click(respond, inputs=[msg, user_history, selected_model], outputs=[chatbot, msg, send_btn, stop_btn])
msg.change(fn=check_send_button_enabled, inputs=[msg], outputs=[send_btn])
stop_btn.click(fn=stop_response, outputs=[send_btn, stop_btn])
demo.launch(show_api=False)
|