File size: 8,478 Bytes
f99ad65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
#
# SPDX-FileCopyrightText: Hadad <[email protected]>
# SPDX-License-Identifier: Apache-2.0
#

import pdfplumber # PDF
import pytesseract # OCR
import docx # Microsoft Word
import zipfile # Microsoft Word
import io
import pandas as pd # Microsoft Excel
import warnings
import re

from openpyxl import load_workbook # Microsoft Excel
from pptx import Presentation # Microsoft PowerPoint
from PIL import Image, ImageEnhance, ImageFilter # OCR
from pathlib import Path

def clean_text(text):
    """Clean and normalize extracted outputs."""
    # Remove non-printable and special characters except common punctuation
    text = re.sub(r'[^a-zA-Z0-9\s.,?!():;\'"-]', '', text)
    # Remove isolated single letters (likely OCR noise)
    text = re.sub(r'\b[a-zA-Z]\b', '', text)
    # Normalize whitespace and remove empty lines
    lines = [line.strip() for line in text.splitlines() if line.strip()]
    return "\n".join(lines)

def format_table(df, max_rows=10):
    """Format pandas DataFrame as a readable table string, limited to max rows."""
    if df.empty:
        return ""
    # Drop fully empty rows and columns to reduce NaN clutter
    df_clean = df.dropna(axis=0, how='all').dropna(axis=1, how='all')
    # Replace NaN with empty string to avoid 'NaN' in output
    df_clean = df_clean.fillna('')
    if df_clean.empty:
        return ""
    display_df = df_clean.head(max_rows)
    table_str = display_df.to_string(index=False)
    if len(df_clean) > max_rows:
        table_str += f"\n... ({len(df_clean) - max_rows} more rows)"
    return table_str

def preprocess_image(img):
    """Preprocess image for better OCR accuracy."""
    try:
        img = img.convert("L")  # Grayscale
        enhancer = ImageEnhance.Contrast(img)
        img = enhancer.enhance(2)  # Increase contrast
        img = img.filter(ImageFilter.MedianFilter())  # Reduce noise
        # Binarize image (threshold)
        img = img.point(lambda x: 0 if x < 140 else 255, '1')
        return img
    except Exception:
        return img

def ocr_image(img):
    """Perform OCR on PIL Image with preprocessing and clean result."""
    try:
        img = preprocess_image(img)
        text = pytesseract.image_to_string(img, lang='eng', config='--psm 6')
        text = clean_text(text)
        return text
    except Exception:
        return ""

def extract_pdf_content(fp):
    """
    Extract text content from PDF file.
    Includes OCR on embedded images to capture text within images.
    Also extracts tables as tab-separated text.
    """
    content = ""
    try:
        with pdfplumber.open(fp) as pdf:
            for i, page in enumerate(pdf.pages, 1):
                text = page.extract_text() or ""
                content += f"Page {i} Text:\n{clean_text(text)}\n\n"
                # OCR on images if any
                if page.images:
                    img_obj = page.to_image(resolution=300)
                    for img in page.images:
                        bbox = (img["x0"], img["top"], img["x1"], img["bottom"])
                        cropped = img_obj.original.crop(bbox)
                        ocr_text = ocr_image(cropped)
                        if ocr_text:
                            content += f"[OCR Text from image on page {i}]:\n{ocr_text}\n\n"
                # Extract tables as TSV
                tables = page.extract_tables()
                for idx, table in enumerate(tables, 1):
                    if table:
                        df = pd.DataFrame(table[1:], columns=table[0])
                        content += f"Table {idx} on page {i}:\n{format_table(df)}\n\n"
    except Exception as e:
        content += f"\n[Error reading PDF {fp}: {e}]"
    return content.strip()

def extract_docx_content(fp):
    """
    Extract text from Microsoft Word files.
    Also performs OCR on embedded images inside the Microsoft Word archive.
    """
    content = ""
    try:
        doc = docx.Document(fp)
        paragraphs = [para.text.strip() for para in doc.paragraphs if para.text.strip()]
        if paragraphs:
            content += "Paragraphs:\n" + "\n".join(paragraphs) + "\n\n"
        # Extract tables
        tables = []
        for table in doc.tables:
            rows = []
            for row in table.rows:
                cells = [cell.text.strip() for cell in row.cells]
                rows.append(cells)
            if rows:
                df = pd.DataFrame(rows[1:], columns=rows[0])
                tables.append(df)
        for i, df in enumerate(tables, 1):
            content += f"Table {i}:\n{format_table(df)}\n\n"
        # OCR on embedded images inside Microsoft Word
        with zipfile.ZipFile(fp) as z:
            for file in z.namelist():
                if file.startswith("word/media/"):
                    data = z.read(file)
                    try:
                        img = Image.open(io.BytesIO(data))
                        ocr_text = ocr_image(img)
                        if ocr_text:
                            content += f"[OCR Text from embedded image]:\n{ocr_text}\n\n"
                    except Exception:
                        pass
    except Exception as e:
        content += f"\n[Error reading Microsoft Word {fp}: {e}]"
    return content.strip()

def extract_excel_content(fp):
    """
    Extract content from Microsoft Excel files.
    Converts sheets to readable tables and replaces NaN values.
    Does NOT attempt to extract images to avoid errors.
    """
    content = ""
    try:
        with warnings.catch_warnings():
            warnings.simplefilter("ignore") # Suppress openpyxl warnings
            # Explicitly specify the engine to avoid potential issues
            sheets = pd.read_excel(fp, sheet_name=None, engine='openpyxl')
        for sheet_name, df in sheets.items():
            content += f"Sheet: {sheet_name}\n"
            content += format_table(df) + "\n\n"
    except Exception as e:
        content += f"\n[Error reading Microsoft Excel {fp}: {e}]"
    return content.strip()

def extract_pptx_content(fp):
    """
    Extract text content from Microsoft PowerPoint presentation slides.
    Includes text from shapes and tables.
    Performs OCR on embedded images.
    """
    content = ""
    try:
        prs = Presentation(fp)
        for i, slide in enumerate(prs.slides, 1):
            slide_texts = []
            for shape in slide.shapes:
                if hasattr(shape, "text") and shape.text.strip():
                    slide_texts.append(shape.text.strip())
                if shape.shape_type == 13 and hasattr(shape, "image") and shape.image:
                    try:
                        img = Image.open(io.BytesIO(shape.image.blob))
                        ocr_text = ocr_image(img)
                        if ocr_text:
                            slide_texts.append(f"[OCR Text from image]:\n{ocr_text}")
                    except Exception:
                        pass
            if slide_texts:
                content += f"Slide {i} Text:\n" + "\n".join(slide_texts) + "\n\n"
            else:
                content += f"Slide {i} Text:\nNo text found on this slide.\n\n"
            # Extract tables
            for shape in slide.shapes:
                if shape.has_table:
                    rows = []
                    table = shape.table
                    for row in table.rows:
                        cells = [cell.text.strip() for cell in row.cells]
                        rows.append(cells)
                    if rows:
                        df = pd.DataFrame(rows[1:], columns=rows[0])
                        content += f"Table on slide {i}:\n{format_table(df)}\n\n"
    except Exception as e:
        content += f"\n[Error reading Microsoft PowerPoint {fp}: {e}]"
    return content.strip()

def extract_file_content(fp):
    """
    Determine file type by extension and extract text content accordingly.
    For unknown types, attempts to read as plain text.
    """
    ext = Path(fp).suffix.lower()
    if ext == ".pdf":
        return extract_pdf_content(fp)
    elif ext in [".doc", ".docx"]:
        return extract_docx_content(fp)
    elif ext in [".xlsx", ".xls"]:
        return extract_excel_content(fp)
    elif ext in [".ppt", ".pptx"]:
        return extract_pptx_content(fp)
    else:
        try:
            text = Path(fp).read_text(encoding="utf-8")
            return clean_text(text)
        except Exception as e:
            return f"\n[Error reading file {fp}: {e}]"