LN1996 commited on
Commit
011a617
·
1 Parent(s): 986b567

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +145 -0
app.py ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch, torchvision
2
+ from torchvision import transforms
3
+ import numpy as np
4
+ import gradio as gr
5
+ from PIL import Image
6
+ from pytorch_grad_cam import GradCAM
7
+ from pytorch_grad_cam.utils.image import show_cam_on_image
8
+ from torch.utils.data import DataLoader
9
+ import itertools
10
+ import matplotlib.pyplot as plt
11
+
12
+ from custom_resnet import Custom_ResNet
13
+ import utils as utils
14
+
15
+ model = Custom_ResNet()
16
+ model.load_state_dict(torch.load("results/custom_resnet_trained.pth", map_location=torch.device('cpu')), strict=False)
17
+ model.eval()
18
+
19
+ classes = ('plane', 'car', 'bird', 'cat', 'deer',
20
+ 'dog', 'frog', 'horse', 'ship', 'truck')
21
+
22
+ cifar_valid = utils.Cifar10SearchDataset('.', train=False, download=False, transform=utils.augmentation_custom_resnet('Valid'))
23
+
24
+ inv_normalize = transforms.Normalize(
25
+ mean=[-0.50/0.23, -0.50/0.23, -0.50/0.23],
26
+ std=[1/0.23, 1/0.23, 1/0.23]
27
+ )
28
+
29
+ def inference(wants_gradcam, n_gradcam, target_layer_number, transparency, wants_misclassified, n_misclassified, input_img = None, n_top_classes=10):
30
+
31
+ if wants_gradcam:
32
+
33
+ outputs_inference_gc = []
34
+ cifar_valid_loader = DataLoader(cifar_valid, batch_size=1, shuffle = True)
35
+ count_gradcam = 1
36
+
37
+ for data, target in cifar_valid_loader:
38
+
39
+ data, target = data.to('cpu'), target.to('cpu')
40
+ target_layers = [model.layer2[target_layer_number]]
41
+
42
+ cam = GradCAM(model=model, target_layers=target_layers, use_cuda=False)
43
+ grayscale_cam = cam(input_tensor=data, targets=None)
44
+ grayscale_cam = grayscale_cam[0, :]
45
+
46
+ org_img = inv_normalize(data).squeeze(0).numpy()
47
+ org_img = np.transpose(org_img, (1, 2, 0))
48
+ visualization = np.array(show_cam_on_image(org_img, grayscale_cam, use_rgb=True, image_weight=transparency))
49
+ outputs_inference_gc.append(visualization)
50
+
51
+ count_gradcam += 1
52
+ if count_gradcam > n_gradcam:
53
+ break
54
+ else:
55
+ outputs_inference_gc = None
56
+
57
+ if wants_misclassified:
58
+ outputs_inference_mis = []
59
+
60
+ cifar_valid_loader = DataLoader(cifar_valid, batch_size=1, shuffle = True)
61
+ count_mis = 1
62
+
63
+ for data, target in cifar_valid_loader:
64
+
65
+ data, target = data.to('cpu'), target.to('cpu')
66
+
67
+ outputs = model(data)
68
+ softmax = torch.nn.Softmax(dim=0)
69
+ o = softmax(outputs.flatten())
70
+ confidences = {classes[i]: float(o[i]) for i in range(10)}
71
+ _, prediction = torch.max(outputs, 1)
72
+
73
+ if target.numpy()[0] != prediction.numpy()[0]:
74
+
75
+ count_mis += 1
76
+
77
+ org_img = inv_normalize(data).squeeze(0).numpy()
78
+ org_img = np.transpose(org_img, (1, 2, 0))
79
+
80
+ fig = plt.figure()
81
+ fig.add_subplot(111)
82
+
83
+ plt.imshow(org_img)
84
+ plt.title(f'Target: {classes[target.numpy()[0]]}\nPred: {classes[prediction.numpy()[0]]}')
85
+ plt.axis('off')
86
+
87
+ fig.canvas.draw()
88
+
89
+ fig_img = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
90
+ fig_img = fig_img.reshape(fig.canvas.get_width_height()[::-1] + (3,))
91
+
92
+ plt.close(fig)
93
+
94
+ outputs_inference_mis.append(fig_img)
95
+
96
+ if count_mis > n_misclassified:
97
+ break
98
+
99
+ else:
100
+ outputs_inference_mis = None
101
+
102
+ if input_img is not None:
103
+ transform=utils.augmentation_custom_resnet('Valid')
104
+ org_img = input_img
105
+ input_img = transform(image=input_img)
106
+ input_img = input_img['image'].unsqueeze(0)
107
+ outputs = model(input_img)
108
+ softmax = torch.nn.Softmax(dim=0)
109
+ o = softmax(outputs.flatten())
110
+ confidences = {classes[i]: float(o[i]) for i in range(10)}
111
+ _, prediction = torch.max(outputs, 1)
112
+
113
+ confidences = {k: v for k, v in sorted(confidences.items(), key=lambda item: item[1], reverse=True)}
114
+ confidences = dict(itertools.islice(confidences.items(), n_top_classes))
115
+ else:
116
+ confidences = None
117
+
118
+
119
+ return outputs_inference_gc, outputs_inference_mis, confidences
120
+
121
+
122
+ title = "CIFAR10 trained on Custom ResNet Model with GradCAM"
123
+ description = "A simple Gradio interface to infer on ResNet model, and get GradCAM results"
124
+ examples = [[None, None, None, None, None, None, 'examples/test_'+str(i)+'.jpg', None] for i in range(10)]
125
+
126
+ demo = gr.Interface(inference,
127
+ inputs = [gr.Checkbox(False, label='Do you want to see GradCAM outputs?'),
128
+ gr.Slider(0, 10, value = 0, step=1, label="How many?"),
129
+ gr.Slider(-2, -1, value = -2, step=1, label="Which target layer?"),
130
+ gr.Slider(0, 1, value = 0, label="Opacity of GradCAM"),
131
+ gr.Checkbox(False, label='Do you want to see misclassified images?'),
132
+ gr.Slider(0, 10, value = 0, step=1, label="How many?"),
133
+ gr.Image(shape=(32, 32), label="Input image"),
134
+ gr.Slider(0, 10, value = 0, step=1, label="How many top classes you want to see?")
135
+ ],
136
+ outputs = [
137
+ gr.Gallery(label="GradCAM Outputs", show_label=True, elem_id="gallery").style(columns=[2], rows=[2], object_fit="contain", height="auto"),
138
+ gr.Gallery(label="Misclassified Images", show_label=True, elem_id="gallery").style(columns=[2], rows=[2], object_fit="contain", height="auto"),
139
+ gr.Label(num_top_classes=None)
140
+ ],
141
+ title = title,
142
+ description = description,
143
+ examples = examples
144
+ )
145
+ demo.launch()