Spaces:
Paused
Paused
File size: 8,195 Bytes
938e515 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
# Copyright (c) Facebook, Inc. and its affiliates.
from typing import Any, Dict, List, Tuple
import torch
from torch.nn import functional as F
from detectron2.structures import BoxMode, Instances
from densepose.converters import ToChartResultConverter
from densepose.converters.base import IntTupleBox, make_int_box
from densepose.structures import DensePoseDataRelative, DensePoseList
class DensePoseBaseSampler:
"""
Base DensePose sampler to produce DensePose data from DensePose predictions.
Samples for each class are drawn according to some distribution over all pixels estimated
to belong to that class.
"""
def __init__(self, count_per_class: int = 8):
"""
Constructor
Args:
count_per_class (int): the sampler produces at most `count_per_class`
samples for each category
"""
self.count_per_class = count_per_class
def __call__(self, instances: Instances) -> DensePoseList:
"""
Convert DensePose predictions (an instance of `DensePoseChartPredictorOutput`)
into DensePose annotations data (an instance of `DensePoseList`)
"""
boxes_xyxy_abs = instances.pred_boxes.tensor.clone().cpu()
boxes_xywh_abs = BoxMode.convert(boxes_xyxy_abs, BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
dp_datas = []
for i in range(len(boxes_xywh_abs)):
annotation_i = self._sample(instances[i], make_int_box(boxes_xywh_abs[i]))
annotation_i[DensePoseDataRelative.S_KEY] = self._resample_mask( # pyre-ignore[6]
instances[i].pred_densepose
)
dp_datas.append(DensePoseDataRelative(annotation_i))
# create densepose annotations on CPU
dp_list = DensePoseList(dp_datas, boxes_xyxy_abs, instances.image_size)
return dp_list
def _sample(self, instance: Instances, bbox_xywh: IntTupleBox) -> Dict[str, List[Any]]:
"""
Sample DensPoseDataRelative from estimation results
"""
labels, dp_result = self._produce_labels_and_results(instance)
annotation = {
DensePoseDataRelative.X_KEY: [],
DensePoseDataRelative.Y_KEY: [],
DensePoseDataRelative.U_KEY: [],
DensePoseDataRelative.V_KEY: [],
DensePoseDataRelative.I_KEY: [],
}
n, h, w = dp_result.shape
for part_id in range(1, DensePoseDataRelative.N_PART_LABELS + 1):
# indices - tuple of 3 1D tensors of size k
# 0: index along the first dimension N
# 1: index along H dimension
# 2: index along W dimension
indices = torch.nonzero(labels.expand(n, h, w) == part_id, as_tuple=True)
# values - an array of size [n, k]
# n: number of channels (U, V, confidences)
# k: number of points labeled with part_id
values = dp_result[indices].view(n, -1)
k = values.shape[1]
count = min(self.count_per_class, k)
if count <= 0:
continue
index_sample = self._produce_index_sample(values, count)
sampled_values = values[:, index_sample]
sampled_y = indices[1][index_sample] + 0.5
sampled_x = indices[2][index_sample] + 0.5
# prepare / normalize data
x = (sampled_x / w * 256.0).cpu().tolist()
y = (sampled_y / h * 256.0).cpu().tolist()
u = sampled_values[0].clamp(0, 1).cpu().tolist()
v = sampled_values[1].clamp(0, 1).cpu().tolist()
fine_segm_labels = [part_id] * count
# extend annotations
annotation[DensePoseDataRelative.X_KEY].extend(x)
annotation[DensePoseDataRelative.Y_KEY].extend(y)
annotation[DensePoseDataRelative.U_KEY].extend(u)
annotation[DensePoseDataRelative.V_KEY].extend(v)
annotation[DensePoseDataRelative.I_KEY].extend(fine_segm_labels)
return annotation
def _produce_index_sample(self, values: torch.Tensor, count: int):
"""
Abstract method to produce a sample of indices to select data
To be implemented in descendants
Args:
values (torch.Tensor): an array of size [n, k] that contains
estimated values (U, V, confidences);
n: number of channels (U, V, confidences)
k: number of points labeled with part_id
count (int): number of samples to produce, should be positive and <= k
Return:
list(int): indices of values (along axis 1) selected as a sample
"""
raise NotImplementedError
def _produce_labels_and_results(self, instance: Instances) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Method to get labels and DensePose results from an instance
Args:
instance (Instances): an instance of `DensePoseChartPredictorOutput`
Return:
labels (torch.Tensor): shape [H, W], DensePose segmentation labels
dp_result (torch.Tensor): shape [2, H, W], stacked DensePose results u and v
"""
converter = ToChartResultConverter
chart_result = converter.convert(instance.pred_densepose, instance.pred_boxes)
labels, dp_result = chart_result.labels.cpu(), chart_result.uv.cpu()
return labels, dp_result
def _resample_mask(self, output: Any) -> torch.Tensor:
"""
Convert DensePose predictor output to segmentation annotation - tensors of size
(256, 256) and type `int64`.
Args:
output: DensePose predictor output with the following attributes:
- coarse_segm: tensor of size [N, D, H, W] with unnormalized coarse
segmentation scores
- fine_segm: tensor of size [N, C, H, W] with unnormalized fine
segmentation scores
Return:
Tensor of size (S, S) and type `int64` with coarse segmentation annotations,
where S = DensePoseDataRelative.MASK_SIZE
"""
sz = DensePoseDataRelative.MASK_SIZE
S = (
F.interpolate(output.coarse_segm, (sz, sz), mode="bilinear", align_corners=False)
.argmax(dim=1)
.long()
)
I = (
(
F.interpolate(
output.fine_segm,
(sz, sz),
mode="bilinear",
align_corners=False,
).argmax(dim=1)
* (S > 0).long()
)
.squeeze()
.cpu()
)
# Map fine segmentation results to coarse segmentation ground truth
# TODO: extract this into separate classes
# coarse segmentation: 1 = Torso, 2 = Right Hand, 3 = Left Hand,
# 4 = Left Foot, 5 = Right Foot, 6 = Upper Leg Right, 7 = Upper Leg Left,
# 8 = Lower Leg Right, 9 = Lower Leg Left, 10 = Upper Arm Left,
# 11 = Upper Arm Right, 12 = Lower Arm Left, 13 = Lower Arm Right,
# 14 = Head
# fine segmentation: 1, 2 = Torso, 3 = Right Hand, 4 = Left Hand,
# 5 = Left Foot, 6 = Right Foot, 7, 9 = Upper Leg Right,
# 8, 10 = Upper Leg Left, 11, 13 = Lower Leg Right,
# 12, 14 = Lower Leg Left, 15, 17 = Upper Arm Left,
# 16, 18 = Upper Arm Right, 19, 21 = Lower Arm Left,
# 20, 22 = Lower Arm Right, 23, 24 = Head
FINE_TO_COARSE_SEGMENTATION = {
1: 1,
2: 1,
3: 2,
4: 3,
5: 4,
6: 5,
7: 6,
8: 7,
9: 6,
10: 7,
11: 8,
12: 9,
13: 8,
14: 9,
15: 10,
16: 11,
17: 10,
18: 11,
19: 12,
20: 13,
21: 12,
22: 13,
23: 14,
24: 14,
}
mask = torch.zeros((sz, sz), dtype=torch.int64, device=torch.device("cpu"))
for i in range(DensePoseDataRelative.N_PART_LABELS):
mask[I == i + 1] = FINE_TO_COARSE_SEGMENTATION[i + 1]
return mask
|