Spaces:
Paused
Paused
# Copyright (c) Facebook, Inc. and its affiliates. | |
from dataclasses import fields | |
import torch | |
from densepose.structures import DensePoseChartPredictorOutput, DensePoseTransformData | |
def densepose_chart_predictor_output_hflip( | |
densepose_predictor_output: DensePoseChartPredictorOutput, | |
transform_data: DensePoseTransformData, | |
) -> DensePoseChartPredictorOutput: | |
""" | |
Change to take into account a Horizontal flip. | |
""" | |
if len(densepose_predictor_output) > 0: | |
PredictorOutput = type(densepose_predictor_output) | |
output_dict = {} | |
for field in fields(densepose_predictor_output): | |
field_value = getattr(densepose_predictor_output, field.name) | |
# flip tensors | |
if isinstance(field_value, torch.Tensor): | |
setattr(densepose_predictor_output, field.name, torch.flip(field_value, [3])) | |
densepose_predictor_output = _flip_iuv_semantics_tensor( | |
densepose_predictor_output, transform_data | |
) | |
densepose_predictor_output = _flip_segm_semantics_tensor( | |
densepose_predictor_output, transform_data | |
) | |
for field in fields(densepose_predictor_output): | |
output_dict[field.name] = getattr(densepose_predictor_output, field.name) | |
return PredictorOutput(**output_dict) | |
else: | |
return densepose_predictor_output | |
def _flip_iuv_semantics_tensor( | |
densepose_predictor_output: DensePoseChartPredictorOutput, | |
dp_transform_data: DensePoseTransformData, | |
) -> DensePoseChartPredictorOutput: | |
point_label_symmetries = dp_transform_data.point_label_symmetries | |
uv_symmetries = dp_transform_data.uv_symmetries | |
N, C, H, W = densepose_predictor_output.u.shape | |
u_loc = (densepose_predictor_output.u[:, 1:, :, :].clamp(0, 1) * 255).long() | |
v_loc = (densepose_predictor_output.v[:, 1:, :, :].clamp(0, 1) * 255).long() | |
Iindex = torch.arange(C - 1, device=densepose_predictor_output.u.device)[ | |
None, :, None, None | |
].expand(N, C - 1, H, W) | |
densepose_predictor_output.u[:, 1:, :, :] = uv_symmetries["U_transforms"][Iindex, v_loc, u_loc] | |
densepose_predictor_output.v[:, 1:, :, :] = uv_symmetries["V_transforms"][Iindex, v_loc, u_loc] | |
for el in ["fine_segm", "u", "v"]: | |
densepose_predictor_output.__dict__[el] = densepose_predictor_output.__dict__[el][ | |
:, point_label_symmetries, :, : | |
] | |
return densepose_predictor_output | |
def _flip_segm_semantics_tensor( | |
densepose_predictor_output: DensePoseChartPredictorOutput, dp_transform_data | |
): | |
if densepose_predictor_output.coarse_segm.shape[1] > 2: | |
densepose_predictor_output.coarse_segm = densepose_predictor_output.coarse_segm[ | |
:, dp_transform_data.mask_label_symmetries, :, : | |
] | |
return densepose_predictor_output | |