Spaces:
Paused
Paused
# Copyright (c) Facebook, Inc. and its affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
# This is a modified version of cocoeval.py where we also have the densepose evaluation. | |
__author__ = "tsungyi" | |
import copy | |
import datetime | |
import logging | |
import numpy as np | |
import pickle | |
import time | |
from collections import defaultdict | |
from enum import Enum | |
from typing import Any, Dict, Tuple | |
import scipy.spatial.distance as ssd | |
import torch | |
import torch.nn.functional as F | |
from pycocotools import mask as maskUtils | |
from scipy.io import loadmat | |
from scipy.ndimage import zoom as spzoom | |
from detectron2.utils.file_io import PathManager | |
from densepose.converters.chart_output_to_chart_result import resample_uv_tensors_to_bbox | |
from densepose.converters.segm_to_mask import ( | |
resample_coarse_segm_tensor_to_bbox, | |
resample_fine_and_coarse_segm_tensors_to_bbox, | |
) | |
from densepose.modeling.cse.utils import squared_euclidean_distance_matrix | |
from densepose.structures import DensePoseDataRelative | |
from densepose.structures.mesh import create_mesh | |
logger = logging.getLogger(__name__) | |
class DensePoseEvalMode(str, Enum): | |
# use both masks and geodesic distances (GPS * IOU) to compute scores | |
GPSM = "gpsm" | |
# use only geodesic distances (GPS) to compute scores | |
GPS = "gps" | |
# use only masks (IOU) to compute scores | |
IOU = "iou" | |
class DensePoseDataMode(str, Enum): | |
# use estimated IUV data (default mode) | |
IUV_DT = "iuvdt" | |
# use ground truth IUV data | |
IUV_GT = "iuvgt" | |
# use ground truth labels I and set UV to 0 | |
I_GT_UV_0 = "igtuv0" | |
# use ground truth labels I and estimated UV coordinates | |
I_GT_UV_DT = "igtuvdt" | |
# use estimated labels I and set UV to 0 | |
I_DT_UV_0 = "idtuv0" | |
class DensePoseCocoEval: | |
# Interface for evaluating detection on the Microsoft COCO dataset. | |
# | |
# The usage for CocoEval is as follows: | |
# cocoGt=..., cocoDt=... # load dataset and results | |
# E = CocoEval(cocoGt,cocoDt); # initialize CocoEval object | |
# E.params.recThrs = ...; # set parameters as desired | |
# E.evaluate(); # run per image evaluation | |
# E.accumulate(); # accumulate per image results | |
# E.summarize(); # display summary metrics of results | |
# For example usage see evalDemo.m and http://mscoco.org/. | |
# | |
# The evaluation parameters are as follows (defaults in brackets): | |
# imgIds - [all] N img ids to use for evaluation | |
# catIds - [all] K cat ids to use for evaluation | |
# iouThrs - [.5:.05:.95] T=10 IoU thresholds for evaluation | |
# recThrs - [0:.01:1] R=101 recall thresholds for evaluation | |
# areaRng - [...] A=4 object area ranges for evaluation | |
# maxDets - [1 10 100] M=3 thresholds on max detections per image | |
# iouType - ['segm'] set iouType to 'segm', 'bbox', 'keypoints' or 'densepose' | |
# iouType replaced the now DEPRECATED useSegm parameter. | |
# useCats - [1] if true use category labels for evaluation | |
# Note: if useCats=0 category labels are ignored as in proposal scoring. | |
# Note: multiple areaRngs [Ax2] and maxDets [Mx1] can be specified. | |
# | |
# evaluate(): evaluates detections on every image and every category and | |
# concats the results into the "evalImgs" with fields: | |
# dtIds - [1xD] id for each of the D detections (dt) | |
# gtIds - [1xG] id for each of the G ground truths (gt) | |
# dtMatches - [TxD] matching gt id at each IoU or 0 | |
# gtMatches - [TxG] matching dt id at each IoU or 0 | |
# dtScores - [1xD] confidence of each dt | |
# gtIgnore - [1xG] ignore flag for each gt | |
# dtIgnore - [TxD] ignore flag for each dt at each IoU | |
# | |
# accumulate(): accumulates the per-image, per-category evaluation | |
# results in "evalImgs" into the dictionary "eval" with fields: | |
# params - parameters used for evaluation | |
# date - date evaluation was performed | |
# counts - [T,R,K,A,M] parameter dimensions (see above) | |
# precision - [TxRxKxAxM] precision for every evaluation setting | |
# recall - [TxKxAxM] max recall for every evaluation setting | |
# Note: precision and recall==-1 for settings with no gt objects. | |
# | |
# See also coco, mask, pycocoDemo, pycocoEvalDemo | |
# | |
# Microsoft COCO Toolbox. version 2.0 | |
# Data, paper, and tutorials available at: http://mscoco.org/ | |
# Code written by Piotr Dollar and Tsung-Yi Lin, 2015. | |
# Licensed under the Simplified BSD License [see coco/license.txt] | |
def __init__( | |
self, | |
cocoGt=None, | |
cocoDt=None, | |
iouType: str = "densepose", | |
multi_storage=None, | |
embedder=None, | |
dpEvalMode: DensePoseEvalMode = DensePoseEvalMode.GPS, | |
dpDataMode: DensePoseDataMode = DensePoseDataMode.IUV_DT, | |
): | |
""" | |
Initialize CocoEval using coco APIs for gt and dt | |
:param cocoGt: coco object with ground truth annotations | |
:param cocoDt: coco object with detection results | |
:return: None | |
""" | |
self.cocoGt = cocoGt # ground truth COCO API | |
self.cocoDt = cocoDt # detections COCO API | |
self.multi_storage = multi_storage | |
self.embedder = embedder | |
self._dpEvalMode = dpEvalMode | |
self._dpDataMode = dpDataMode | |
self.evalImgs = defaultdict(list) # per-image per-category eval results [KxAxI] | |
self.eval = {} # accumulated evaluation results | |
self._gts = defaultdict(list) # gt for evaluation | |
self._dts = defaultdict(list) # dt for evaluation | |
self.params = Params(iouType=iouType) # parameters | |
self._paramsEval = {} # parameters for evaluation | |
self.stats = [] # result summarization | |
self.ious = {} # ious between all gts and dts | |
if cocoGt is not None: | |
self.params.imgIds = sorted(cocoGt.getImgIds()) | |
self.params.catIds = sorted(cocoGt.getCatIds()) | |
self.ignoreThrBB = 0.7 | |
self.ignoreThrUV = 0.9 | |
def _loadGEval(self): | |
smpl_subdiv_fpath = PathManager.get_local_path( | |
"https://dl.fbaipublicfiles.com/densepose/data/SMPL_subdiv.mat" | |
) | |
pdist_transform_fpath = PathManager.get_local_path( | |
"https://dl.fbaipublicfiles.com/densepose/data/SMPL_SUBDIV_TRANSFORM.mat" | |
) | |
pdist_matrix_fpath = PathManager.get_local_path( | |
"https://dl.fbaipublicfiles.com/densepose/data/Pdist_matrix.pkl", timeout_sec=120 | |
) | |
SMPL_subdiv = loadmat(smpl_subdiv_fpath) | |
self.PDIST_transform = loadmat(pdist_transform_fpath) | |
self.PDIST_transform = self.PDIST_transform["index"].squeeze() | |
UV = np.array([SMPL_subdiv["U_subdiv"], SMPL_subdiv["V_subdiv"]]).squeeze() | |
ClosestVertInds = np.arange(UV.shape[1]) + 1 | |
self.Part_UVs = [] | |
self.Part_ClosestVertInds = [] | |
for i in np.arange(24): | |
self.Part_UVs.append(UV[:, SMPL_subdiv["Part_ID_subdiv"].squeeze() == (i + 1)]) | |
self.Part_ClosestVertInds.append( | |
ClosestVertInds[SMPL_subdiv["Part_ID_subdiv"].squeeze() == (i + 1)] | |
) | |
with open(pdist_matrix_fpath, "rb") as hFile: | |
arrays = pickle.load(hFile, encoding="latin1") | |
self.Pdist_matrix = arrays["Pdist_matrix"] | |
self.Part_ids = np.array(SMPL_subdiv["Part_ID_subdiv"].squeeze()) | |
# Mean geodesic distances for parts. | |
self.Mean_Distances = np.array([0, 0.351, 0.107, 0.126, 0.237, 0.173, 0.142, 0.128, 0.150]) | |
# Coarse Part labels. | |
self.CoarseParts = np.array( | |
[0, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8] | |
) | |
def _prepare(self): | |
""" | |
Prepare ._gts and ._dts for evaluation based on params | |
:return: None | |
""" | |
def _toMask(anns, coco): | |
# modify ann['segmentation'] by reference | |
for ann in anns: | |
# safeguard for invalid segmentation annotation; | |
# annotations containing empty lists exist in the posetrack | |
# dataset. This is not a correct segmentation annotation | |
# in terms of COCO format; we need to deal with it somehow | |
segm = ann["segmentation"] | |
if type(segm) == list and len(segm) == 0: | |
ann["segmentation"] = None | |
continue | |
rle = coco.annToRLE(ann) | |
ann["segmentation"] = rle | |
def _getIgnoreRegion(iid, coco): | |
img = coco.imgs[iid] | |
if "ignore_regions_x" not in img.keys(): | |
return None | |
if len(img["ignore_regions_x"]) == 0: | |
return None | |
rgns_merged = [ | |
[v for xy in zip(region_x, region_y) for v in xy] | |
for region_x, region_y in zip(img["ignore_regions_x"], img["ignore_regions_y"]) | |
] | |
rles = maskUtils.frPyObjects(rgns_merged, img["height"], img["width"]) | |
rle = maskUtils.merge(rles) | |
return maskUtils.decode(rle) | |
def _checkIgnore(dt, iregion): | |
if iregion is None: | |
return True | |
bb = np.array(dt["bbox"]).astype(int) | |
x1, y1, x2, y2 = bb[0], bb[1], bb[0] + bb[2], bb[1] + bb[3] | |
x2 = min([x2, iregion.shape[1]]) | |
y2 = min([y2, iregion.shape[0]]) | |
if bb[2] * bb[3] == 0: | |
return False | |
crop_iregion = iregion[y1:y2, x1:x2] | |
if crop_iregion.sum() == 0: | |
return True | |
if "densepose" not in dt.keys(): # filtering boxes | |
return crop_iregion.sum() / bb[2] / bb[3] < self.ignoreThrBB | |
# filtering UVs | |
ignoremask = np.require(crop_iregion, requirements=["F"]) | |
mask = self._extract_mask(dt) | |
uvmask = np.require(np.asarray(mask > 0), dtype=np.uint8, requirements=["F"]) | |
uvmask_ = maskUtils.encode(uvmask) | |
ignoremask_ = maskUtils.encode(ignoremask) | |
uviou = maskUtils.iou([uvmask_], [ignoremask_], [1])[0] | |
return uviou < self.ignoreThrUV | |
p = self.params | |
if p.useCats: | |
gts = self.cocoGt.loadAnns(self.cocoGt.getAnnIds(imgIds=p.imgIds, catIds=p.catIds)) | |
dts = self.cocoDt.loadAnns(self.cocoDt.getAnnIds(imgIds=p.imgIds, catIds=p.catIds)) | |
else: | |
gts = self.cocoGt.loadAnns(self.cocoGt.getAnnIds(imgIds=p.imgIds)) | |
dts = self.cocoDt.loadAnns(self.cocoDt.getAnnIds(imgIds=p.imgIds)) | |
imns = self.cocoGt.loadImgs(p.imgIds) | |
self.size_mapping = {} | |
for im in imns: | |
self.size_mapping[im["id"]] = [im["height"], im["width"]] | |
# if iouType == 'uv', add point gt annotations | |
if p.iouType == "densepose": | |
self._loadGEval() | |
# convert ground truth to mask if iouType == 'segm' | |
if p.iouType == "segm": | |
_toMask(gts, self.cocoGt) | |
_toMask(dts, self.cocoDt) | |
# set ignore flag | |
for gt in gts: | |
gt["ignore"] = gt["ignore"] if "ignore" in gt else 0 | |
gt["ignore"] = "iscrowd" in gt and gt["iscrowd"] | |
if p.iouType == "keypoints": | |
gt["ignore"] = (gt["num_keypoints"] == 0) or gt["ignore"] | |
if p.iouType == "densepose": | |
gt["ignore"] = ("dp_x" in gt) == 0 | |
if p.iouType == "segm": | |
gt["ignore"] = gt["segmentation"] is None | |
self._gts = defaultdict(list) # gt for evaluation | |
self._dts = defaultdict(list) # dt for evaluation | |
self._igrgns = defaultdict(list) | |
for gt in gts: | |
iid = gt["image_id"] | |
if iid not in self._igrgns.keys(): | |
self._igrgns[iid] = _getIgnoreRegion(iid, self.cocoGt) | |
if _checkIgnore(gt, self._igrgns[iid]): | |
self._gts[iid, gt["category_id"]].append(gt) | |
for dt in dts: | |
iid = dt["image_id"] | |
if (iid not in self._igrgns) or _checkIgnore(dt, self._igrgns[iid]): | |
self._dts[iid, dt["category_id"]].append(dt) | |
self.evalImgs = defaultdict(list) # per-image per-category evaluation results | |
self.eval = {} # accumulated evaluation results | |
def evaluate(self): | |
""" | |
Run per image evaluation on given images and store results (a list of dict) in self.evalImgs | |
:return: None | |
""" | |
tic = time.time() | |
logger.info("Running per image DensePose evaluation... {}".format(self.params.iouType)) | |
p = self.params | |
# add backward compatibility if useSegm is specified in params | |
if p.useSegm is not None: | |
p.iouType = "segm" if p.useSegm == 1 else "bbox" | |
logger.info("useSegm (deprecated) is not None. Running DensePose evaluation") | |
p.imgIds = list(np.unique(p.imgIds)) | |
if p.useCats: | |
p.catIds = list(np.unique(p.catIds)) | |
p.maxDets = sorted(p.maxDets) | |
self.params = p | |
self._prepare() | |
# loop through images, area range, max detection number | |
catIds = p.catIds if p.useCats else [-1] | |
if p.iouType in ["segm", "bbox"]: | |
computeIoU = self.computeIoU | |
elif p.iouType == "keypoints": | |
computeIoU = self.computeOks | |
elif p.iouType == "densepose": | |
computeIoU = self.computeOgps | |
if self._dpEvalMode in {DensePoseEvalMode.GPSM, DensePoseEvalMode.IOU}: | |
self.real_ious = { | |
(imgId, catId): self.computeDPIoU(imgId, catId) | |
for imgId in p.imgIds | |
for catId in catIds | |
} | |
self.ious = { | |
(imgId, catId): computeIoU(imgId, catId) for imgId in p.imgIds for catId in catIds | |
} | |
evaluateImg = self.evaluateImg | |
maxDet = p.maxDets[-1] | |
self.evalImgs = [ | |
evaluateImg(imgId, catId, areaRng, maxDet) | |
for catId in catIds | |
for areaRng in p.areaRng | |
for imgId in p.imgIds | |
] | |
self._paramsEval = copy.deepcopy(self.params) | |
toc = time.time() | |
logger.info("DensePose evaluation DONE (t={:0.2f}s).".format(toc - tic)) | |
def getDensePoseMask(self, polys): | |
maskGen = np.zeros([256, 256]) | |
stop = min(len(polys) + 1, 15) | |
for i in range(1, stop): | |
if polys[i - 1]: | |
currentMask = maskUtils.decode(polys[i - 1]) | |
maskGen[currentMask > 0] = i | |
return maskGen | |
def _generate_rlemask_on_image(self, mask, imgId, data): | |
bbox_xywh = np.array(data["bbox"]) | |
x, y, w, h = bbox_xywh | |
im_h, im_w = self.size_mapping[imgId] | |
im_mask = np.zeros((im_h, im_w), dtype=np.uint8) | |
if mask is not None: | |
x0 = max(int(x), 0) | |
x1 = min(int(x + w), im_w, int(x) + mask.shape[1]) | |
y0 = max(int(y), 0) | |
y1 = min(int(y + h), im_h, int(y) + mask.shape[0]) | |
y = int(y) | |
x = int(x) | |
im_mask[y0:y1, x0:x1] = mask[y0 - y : y1 - y, x0 - x : x1 - x] | |
im_mask = np.require(np.asarray(im_mask > 0), dtype=np.uint8, requirements=["F"]) | |
rle_mask = maskUtils.encode(np.array(im_mask[:, :, np.newaxis], order="F"))[0] | |
return rle_mask | |
def computeDPIoU(self, imgId, catId): | |
p = self.params | |
if p.useCats: | |
gt = self._gts[imgId, catId] | |
dt = self._dts[imgId, catId] | |
else: | |
gt = [_ for cId in p.catIds for _ in self._gts[imgId, cId]] | |
dt = [_ for cId in p.catIds for _ in self._dts[imgId, cId]] | |
if len(gt) == 0 and len(dt) == 0: | |
return [] | |
inds = np.argsort([-d["score"] for d in dt], kind="mergesort") | |
dt = [dt[i] for i in inds] | |
if len(dt) > p.maxDets[-1]: | |
dt = dt[0 : p.maxDets[-1]] | |
gtmasks = [] | |
for g in gt: | |
if DensePoseDataRelative.S_KEY in g: | |
# convert DensePose mask to a binary mask | |
mask = np.minimum(self.getDensePoseMask(g[DensePoseDataRelative.S_KEY]), 1.0) | |
_, _, w, h = g["bbox"] | |
scale_x = float(max(w, 1)) / mask.shape[1] | |
scale_y = float(max(h, 1)) / mask.shape[0] | |
mask = spzoom(mask, (scale_y, scale_x), order=1, prefilter=False) | |
mask = np.array(mask > 0.5, dtype=np.uint8) | |
rle_mask = self._generate_rlemask_on_image(mask, imgId, g) | |
elif "segmentation" in g: | |
segmentation = g["segmentation"] | |
if isinstance(segmentation, list) and segmentation: | |
# polygons | |
im_h, im_w = self.size_mapping[imgId] | |
rles = maskUtils.frPyObjects(segmentation, im_h, im_w) | |
rle_mask = maskUtils.merge(rles) | |
elif isinstance(segmentation, dict): | |
if isinstance(segmentation["counts"], list): | |
# uncompressed RLE | |
im_h, im_w = self.size_mapping[imgId] | |
rle_mask = maskUtils.frPyObjects(segmentation, im_h, im_w) | |
else: | |
# compressed RLE | |
rle_mask = segmentation | |
else: | |
rle_mask = self._generate_rlemask_on_image(None, imgId, g) | |
else: | |
rle_mask = self._generate_rlemask_on_image(None, imgId, g) | |
gtmasks.append(rle_mask) | |
dtmasks = [] | |
for d in dt: | |
mask = self._extract_mask(d) | |
mask = np.require(np.asarray(mask > 0), dtype=np.uint8, requirements=["F"]) | |
rle_mask = self._generate_rlemask_on_image(mask, imgId, d) | |
dtmasks.append(rle_mask) | |
# compute iou between each dt and gt region | |
iscrowd = [int(o.get("iscrowd", 0)) for o in gt] | |
iousDP = maskUtils.iou(dtmasks, gtmasks, iscrowd) | |
return iousDP | |
def computeIoU(self, imgId, catId): | |
p = self.params | |
if p.useCats: | |
gt = self._gts[imgId, catId] | |
dt = self._dts[imgId, catId] | |
else: | |
gt = [_ for cId in p.catIds for _ in self._gts[imgId, cId]] | |
dt = [_ for cId in p.catIds for _ in self._dts[imgId, cId]] | |
if len(gt) == 0 and len(dt) == 0: | |
return [] | |
inds = np.argsort([-d["score"] for d in dt], kind="mergesort") | |
dt = [dt[i] for i in inds] | |
if len(dt) > p.maxDets[-1]: | |
dt = dt[0 : p.maxDets[-1]] | |
if p.iouType == "segm": | |
g = [g["segmentation"] for g in gt if g["segmentation"] is not None] | |
d = [d["segmentation"] for d in dt if d["segmentation"] is not None] | |
elif p.iouType == "bbox": | |
g = [g["bbox"] for g in gt] | |
d = [d["bbox"] for d in dt] | |
else: | |
raise Exception("unknown iouType for iou computation") | |
# compute iou between each dt and gt region | |
iscrowd = [int(o.get("iscrowd", 0)) for o in gt] | |
ious = maskUtils.iou(d, g, iscrowd) | |
return ious | |
def computeOks(self, imgId, catId): | |
p = self.params | |
# dimension here should be Nxm | |
gts = self._gts[imgId, catId] | |
dts = self._dts[imgId, catId] | |
inds = np.argsort([-d["score"] for d in dts], kind="mergesort") | |
dts = [dts[i] for i in inds] | |
if len(dts) > p.maxDets[-1]: | |
dts = dts[0 : p.maxDets[-1]] | |
# if len(gts) == 0 and len(dts) == 0: | |
if len(gts) == 0 or len(dts) == 0: | |
return [] | |
ious = np.zeros((len(dts), len(gts))) | |
sigmas = ( | |
np.array( | |
[ | |
0.26, | |
0.25, | |
0.25, | |
0.35, | |
0.35, | |
0.79, | |
0.79, | |
0.72, | |
0.72, | |
0.62, | |
0.62, | |
1.07, | |
1.07, | |
0.87, | |
0.87, | |
0.89, | |
0.89, | |
] | |
) | |
/ 10.0 | |
) | |
vars = (sigmas * 2) ** 2 | |
k = len(sigmas) | |
# compute oks between each detection and ground truth object | |
for j, gt in enumerate(gts): | |
# create bounds for ignore regions(double the gt bbox) | |
g = np.array(gt["keypoints"]) | |
xg = g[0::3] | |
yg = g[1::3] | |
vg = g[2::3] | |
k1 = np.count_nonzero(vg > 0) | |
bb = gt["bbox"] | |
x0 = bb[0] - bb[2] | |
x1 = bb[0] + bb[2] * 2 | |
y0 = bb[1] - bb[3] | |
y1 = bb[1] + bb[3] * 2 | |
for i, dt in enumerate(dts): | |
d = np.array(dt["keypoints"]) | |
xd = d[0::3] | |
yd = d[1::3] | |
if k1 > 0: | |
# measure the per-keypoint distance if keypoints visible | |
dx = xd - xg | |
dy = yd - yg | |
else: | |
# measure minimum distance to keypoints in (x0,y0) & (x1,y1) | |
z = np.zeros(k) | |
dx = np.max((z, x0 - xd), axis=0) + np.max((z, xd - x1), axis=0) | |
dy = np.max((z, y0 - yd), axis=0) + np.max((z, yd - y1), axis=0) | |
e = (dx**2 + dy**2) / vars / (gt["area"] + np.spacing(1)) / 2 | |
if k1 > 0: | |
e = e[vg > 0] | |
ious[i, j] = np.sum(np.exp(-e)) / e.shape[0] | |
return ious | |
def _extract_mask(self, dt: Dict[str, Any]) -> np.ndarray: | |
if "densepose" in dt: | |
densepose_results_quantized = dt["densepose"] | |
return densepose_results_quantized.labels_uv_uint8[0].numpy() | |
elif "cse_mask" in dt: | |
return dt["cse_mask"] | |
elif "coarse_segm" in dt: | |
dy = max(int(dt["bbox"][3]), 1) | |
dx = max(int(dt["bbox"][2]), 1) | |
return ( | |
F.interpolate( | |
dt["coarse_segm"].unsqueeze(0), | |
(dy, dx), | |
mode="bilinear", | |
align_corners=False, | |
) | |
.squeeze(0) | |
.argmax(0) | |
.numpy() | |
.astype(np.uint8) | |
) | |
elif "record_id" in dt: | |
assert ( | |
self.multi_storage is not None | |
), f"Storage record id encountered in a detection {dt}, but no storage provided!" | |
record = self.multi_storage.get(dt["rank"], dt["record_id"]) | |
coarse_segm = record["coarse_segm"] | |
dy = max(int(dt["bbox"][3]), 1) | |
dx = max(int(dt["bbox"][2]), 1) | |
return ( | |
F.interpolate( | |
coarse_segm.unsqueeze(0), | |
(dy, dx), | |
mode="bilinear", | |
align_corners=False, | |
) | |
.squeeze(0) | |
.argmax(0) | |
.numpy() | |
.astype(np.uint8) | |
) | |
else: | |
raise Exception(f"No mask data in the detection: {dt}") | |
raise ValueError('The prediction dict needs to contain either "densepose" or "cse_mask"') | |
def _extract_iuv( | |
self, densepose_data: np.ndarray, py: np.ndarray, px: np.ndarray, gt: Dict[str, Any] | |
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: | |
""" | |
Extract arrays of I, U and V values at given points as numpy arrays | |
given the data mode stored in self._dpDataMode | |
""" | |
if self._dpDataMode == DensePoseDataMode.IUV_DT: | |
# estimated labels and UV (default) | |
ipoints = densepose_data[0, py, px] | |
upoints = densepose_data[1, py, px] / 255.0 # convert from uint8 by /255. | |
vpoints = densepose_data[2, py, px] / 255.0 | |
elif self._dpDataMode == DensePoseDataMode.IUV_GT: | |
# ground truth | |
ipoints = np.array(gt["dp_I"]) | |
upoints = np.array(gt["dp_U"]) | |
vpoints = np.array(gt["dp_V"]) | |
elif self._dpDataMode == DensePoseDataMode.I_GT_UV_0: | |
# ground truth labels, UV = 0 | |
ipoints = np.array(gt["dp_I"]) | |
upoints = upoints * 0.0 | |
vpoints = vpoints * 0.0 | |
elif self._dpDataMode == DensePoseDataMode.I_GT_UV_DT: | |
# ground truth labels, estimated UV | |
ipoints = np.array(gt["dp_I"]) | |
upoints = densepose_data[1, py, px] / 255.0 # convert from uint8 by /255. | |
vpoints = densepose_data[2, py, px] / 255.0 | |
elif self._dpDataMode == DensePoseDataMode.I_DT_UV_0: | |
# estimated labels, UV = 0 | |
ipoints = densepose_data[0, py, px] | |
upoints = upoints * 0.0 | |
vpoints = vpoints * 0.0 | |
else: | |
raise ValueError(f"Unknown data mode: {self._dpDataMode}") | |
return ipoints, upoints, vpoints | |
def computeOgps_single_pair(self, dt, gt, py, px, pt_mask): | |
if "densepose" in dt: | |
ipoints, upoints, vpoints = self.extract_iuv_from_quantized(dt, gt, py, px, pt_mask) | |
return self.computeOgps_single_pair_iuv(dt, gt, ipoints, upoints, vpoints) | |
elif "u" in dt: | |
ipoints, upoints, vpoints = self.extract_iuv_from_raw(dt, gt, py, px, pt_mask) | |
return self.computeOgps_single_pair_iuv(dt, gt, ipoints, upoints, vpoints) | |
elif "record_id" in dt: | |
assert ( | |
self.multi_storage is not None | |
), f"Storage record id encountered in detection {dt}, but no storage provided!" | |
record = self.multi_storage.get(dt["rank"], dt["record_id"]) | |
record["bbox"] = dt["bbox"] | |
if "u" in record: | |
ipoints, upoints, vpoints = self.extract_iuv_from_raw(record, gt, py, px, pt_mask) | |
return self.computeOgps_single_pair_iuv(dt, gt, ipoints, upoints, vpoints) | |
elif "embedding" in record: | |
return self.computeOgps_single_pair_cse( | |
dt, | |
gt, | |
py, | |
px, | |
pt_mask, | |
record["coarse_segm"], | |
record["embedding"], | |
record["bbox"], | |
) | |
else: | |
raise Exception(f"Unknown record format: {record}") | |
elif "embedding" in dt: | |
return self.computeOgps_single_pair_cse( | |
dt, gt, py, px, pt_mask, dt["coarse_segm"], dt["embedding"], dt["bbox"] | |
) | |
raise Exception(f"Unknown detection format: {dt}") | |
def extract_iuv_from_quantized(self, dt, gt, py, px, pt_mask): | |
densepose_results_quantized = dt["densepose"] | |
ipoints, upoints, vpoints = self._extract_iuv( | |
densepose_results_quantized.labels_uv_uint8.numpy(), py, px, gt | |
) | |
ipoints[pt_mask == -1] = 0 | |
return ipoints, upoints, vpoints | |
def extract_iuv_from_raw(self, dt, gt, py, px, pt_mask): | |
labels_dt = resample_fine_and_coarse_segm_tensors_to_bbox( | |
dt["fine_segm"].unsqueeze(0), | |
dt["coarse_segm"].unsqueeze(0), | |
dt["bbox"], | |
) | |
uv = resample_uv_tensors_to_bbox( | |
dt["u"].unsqueeze(0), dt["v"].unsqueeze(0), labels_dt.squeeze(0), dt["bbox"] | |
) | |
labels_uv_uint8 = torch.cat((labels_dt.byte(), (uv * 255).clamp(0, 255).byte())) | |
ipoints, upoints, vpoints = self._extract_iuv(labels_uv_uint8.numpy(), py, px, gt) | |
ipoints[pt_mask == -1] = 0 | |
return ipoints, upoints, vpoints | |
def computeOgps_single_pair_iuv(self, dt, gt, ipoints, upoints, vpoints): | |
cVertsGT, ClosestVertsGTTransformed = self.findAllClosestVertsGT(gt) | |
cVerts = self.findAllClosestVertsUV(upoints, vpoints, ipoints) | |
# Get pairwise geodesic distances between gt and estimated mesh points. | |
dist = self.getDistancesUV(ClosestVertsGTTransformed, cVerts) | |
# Compute the Ogps measure. | |
# Find the mean geodesic normalization distance for | |
# each GT point, based on which part it is on. | |
Current_Mean_Distances = self.Mean_Distances[ | |
self.CoarseParts[self.Part_ids[cVertsGT[cVertsGT > 0].astype(int) - 1]] | |
] | |
return dist, Current_Mean_Distances | |
def computeOgps_single_pair_cse( | |
self, dt, gt, py, px, pt_mask, coarse_segm, embedding, bbox_xywh_abs | |
): | |
# 0-based mesh vertex indices | |
cVertsGT = torch.as_tensor(gt["dp_vertex"], dtype=torch.int64) | |
# label for each pixel of the bbox, [H, W] tensor of long | |
labels_dt = resample_coarse_segm_tensor_to_bbox( | |
coarse_segm.unsqueeze(0), bbox_xywh_abs | |
).squeeze(0) | |
x, y, w, h = bbox_xywh_abs | |
# embedding for each pixel of the bbox, [D, H, W] tensor of float32 | |
embedding = F.interpolate( | |
embedding.unsqueeze(0), (int(h), int(w)), mode="bilinear", align_corners=False | |
).squeeze(0) | |
# valid locations py, px | |
py_pt = torch.from_numpy(py[pt_mask > -1]) | |
px_pt = torch.from_numpy(px[pt_mask > -1]) | |
cVerts = torch.ones_like(cVertsGT) * -1 | |
cVerts[pt_mask > -1] = self.findClosestVertsCse( | |
embedding, py_pt, px_pt, labels_dt, gt["ref_model"] | |
) | |
# Get pairwise geodesic distances between gt and estimated mesh points. | |
dist = self.getDistancesCse(cVertsGT, cVerts, gt["ref_model"]) | |
# normalize distances | |
if (gt["ref_model"] == "smpl_27554") and ("dp_I" in gt): | |
Current_Mean_Distances = self.Mean_Distances[ | |
self.CoarseParts[np.array(gt["dp_I"], dtype=int)] | |
] | |
else: | |
Current_Mean_Distances = 0.255 | |
return dist, Current_Mean_Distances | |
def computeOgps(self, imgId, catId): | |
p = self.params | |
# dimension here should be Nxm | |
g = self._gts[imgId, catId] | |
d = self._dts[imgId, catId] | |
inds = np.argsort([-d_["score"] for d_ in d], kind="mergesort") | |
d = [d[i] for i in inds] | |
if len(d) > p.maxDets[-1]: | |
d = d[0 : p.maxDets[-1]] | |
# if len(gts) == 0 and len(dts) == 0: | |
if len(g) == 0 or len(d) == 0: | |
return [] | |
ious = np.zeros((len(d), len(g))) | |
# compute opgs between each detection and ground truth object | |
# sigma = self.sigma #0.255 # dist = 0.3m corresponds to ogps = 0.5 | |
# 1 # dist = 0.3m corresponds to ogps = 0.96 | |
# 1.45 # dist = 1.7m (person height) corresponds to ogps = 0.5) | |
for j, gt in enumerate(g): | |
if not gt["ignore"]: | |
g_ = gt["bbox"] | |
for i, dt in enumerate(d): | |
# | |
dy = int(dt["bbox"][3]) | |
dx = int(dt["bbox"][2]) | |
dp_x = np.array(gt["dp_x"]) * g_[2] / 255.0 | |
dp_y = np.array(gt["dp_y"]) * g_[3] / 255.0 | |
py = (dp_y + g_[1] - dt["bbox"][1]).astype(int) | |
px = (dp_x + g_[0] - dt["bbox"][0]).astype(int) | |
# | |
pts = np.zeros(len(px)) | |
pts[px >= dx] = -1 | |
pts[py >= dy] = -1 | |
pts[px < 0] = -1 | |
pts[py < 0] = -1 | |
if len(pts) < 1: | |
ogps = 0.0 | |
elif np.max(pts) == -1: | |
ogps = 0.0 | |
else: | |
px[pts == -1] = 0 | |
py[pts == -1] = 0 | |
dists_between_matches, dist_norm_coeffs = self.computeOgps_single_pair( | |
dt, gt, py, px, pts | |
) | |
# Compute gps | |
ogps_values = np.exp( | |
-(dists_between_matches**2) / (2 * (dist_norm_coeffs**2)) | |
) | |
# | |
ogps = np.mean(ogps_values) if len(ogps_values) > 0 else 0.0 | |
ious[i, j] = ogps | |
gbb = [gt["bbox"] for gt in g] | |
dbb = [dt["bbox"] for dt in d] | |
# compute iou between each dt and gt region | |
iscrowd = [int(o.get("iscrowd", 0)) for o in g] | |
ious_bb = maskUtils.iou(dbb, gbb, iscrowd) | |
return ious, ious_bb | |
def evaluateImg(self, imgId, catId, aRng, maxDet): | |
""" | |
perform evaluation for single category and image | |
:return: dict (single image results) | |
""" | |
p = self.params | |
if p.useCats: | |
gt = self._gts[imgId, catId] | |
dt = self._dts[imgId, catId] | |
else: | |
gt = [_ for cId in p.catIds for _ in self._gts[imgId, cId]] | |
dt = [_ for cId in p.catIds for _ in self._dts[imgId, cId]] | |
if len(gt) == 0 and len(dt) == 0: | |
return None | |
for g in gt: | |
# g['_ignore'] = g['ignore'] | |
if g["ignore"] or (g["area"] < aRng[0] or g["area"] > aRng[1]): | |
g["_ignore"] = True | |
else: | |
g["_ignore"] = False | |
# sort dt highest score first, sort gt ignore last | |
gtind = np.argsort([g["_ignore"] for g in gt], kind="mergesort") | |
gt = [gt[i] for i in gtind] | |
dtind = np.argsort([-d["score"] for d in dt], kind="mergesort") | |
dt = [dt[i] for i in dtind[0:maxDet]] | |
iscrowd = [int(o.get("iscrowd", 0)) for o in gt] | |
# load computed ious | |
if p.iouType == "densepose": | |
# print('Checking the length', len(self.ious[imgId, catId])) | |
# if len(self.ious[imgId, catId]) == 0: | |
# print(self.ious[imgId, catId]) | |
ious = ( | |
self.ious[imgId, catId][0][:, gtind] | |
if len(self.ious[imgId, catId]) > 0 | |
else self.ious[imgId, catId] | |
) | |
ioubs = ( | |
self.ious[imgId, catId][1][:, gtind] | |
if len(self.ious[imgId, catId]) > 0 | |
else self.ious[imgId, catId] | |
) | |
if self._dpEvalMode in {DensePoseEvalMode.GPSM, DensePoseEvalMode.IOU}: | |
iousM = ( | |
self.real_ious[imgId, catId][:, gtind] | |
if len(self.real_ious[imgId, catId]) > 0 | |
else self.real_ious[imgId, catId] | |
) | |
else: | |
ious = ( | |
self.ious[imgId, catId][:, gtind] | |
if len(self.ious[imgId, catId]) > 0 | |
else self.ious[imgId, catId] | |
) | |
T = len(p.iouThrs) | |
G = len(gt) | |
D = len(dt) | |
gtm = np.zeros((T, G)) | |
dtm = np.zeros((T, D)) | |
gtIg = np.array([g["_ignore"] for g in gt]) | |
dtIg = np.zeros((T, D)) | |
if np.all(gtIg) and p.iouType == "densepose": | |
dtIg = np.logical_or(dtIg, True) | |
if len(ious) > 0: # and not p.iouType == 'densepose': | |
for tind, t in enumerate(p.iouThrs): | |
for dind, d in enumerate(dt): | |
# information about best match so far (m=-1 -> unmatched) | |
iou = min([t, 1 - 1e-10]) | |
m = -1 | |
for gind, _g in enumerate(gt): | |
# if this gt already matched, and not a crowd, continue | |
if gtm[tind, gind] > 0 and not iscrowd[gind]: | |
continue | |
# if dt matched to reg gt, and on ignore gt, stop | |
if m > -1 and gtIg[m] == 0 and gtIg[gind] == 1: | |
break | |
if p.iouType == "densepose": | |
if self._dpEvalMode == DensePoseEvalMode.GPSM: | |
new_iou = np.sqrt(iousM[dind, gind] * ious[dind, gind]) | |
elif self._dpEvalMode == DensePoseEvalMode.IOU: | |
new_iou = iousM[dind, gind] | |
elif self._dpEvalMode == DensePoseEvalMode.GPS: | |
new_iou = ious[dind, gind] | |
else: | |
new_iou = ious[dind, gind] | |
if new_iou < iou: | |
continue | |
if new_iou == 0.0: | |
continue | |
# if match successful and best so far, store appropriately | |
iou = new_iou | |
m = gind | |
# if match made store id of match for both dt and gt | |
if m == -1: | |
continue | |
dtIg[tind, dind] = gtIg[m] | |
dtm[tind, dind] = gt[m]["id"] | |
gtm[tind, m] = d["id"] | |
if p.iouType == "densepose": | |
if not len(ioubs) == 0: | |
for dind, d in enumerate(dt): | |
# information about best match so far (m=-1 -> unmatched) | |
if dtm[tind, dind] == 0: | |
ioub = 0.8 | |
m = -1 | |
for gind, _g in enumerate(gt): | |
# if this gt already matched, and not a crowd, continue | |
if gtm[tind, gind] > 0 and not iscrowd[gind]: | |
continue | |
# continue to next gt unless better match made | |
if ioubs[dind, gind] < ioub: | |
continue | |
# if match successful and best so far, store appropriately | |
ioub = ioubs[dind, gind] | |
m = gind | |
# if match made store id of match for both dt and gt | |
if m > -1: | |
dtIg[:, dind] = gtIg[m] | |
if gtIg[m]: | |
dtm[tind, dind] = gt[m]["id"] | |
gtm[tind, m] = d["id"] | |
# set unmatched detections outside of area range to ignore | |
a = np.array([d["area"] < aRng[0] or d["area"] > aRng[1] for d in dt]).reshape((1, len(dt))) | |
dtIg = np.logical_or(dtIg, np.logical_and(dtm == 0, np.repeat(a, T, 0))) | |
# store results for given image and category | |
# print('Done with the function', len(self.ious[imgId, catId])) | |
return { | |
"image_id": imgId, | |
"category_id": catId, | |
"aRng": aRng, | |
"maxDet": maxDet, | |
"dtIds": [d["id"] for d in dt], | |
"gtIds": [g["id"] for g in gt], | |
"dtMatches": dtm, | |
"gtMatches": gtm, | |
"dtScores": [d["score"] for d in dt], | |
"gtIgnore": gtIg, | |
"dtIgnore": dtIg, | |
} | |
def accumulate(self, p=None): | |
""" | |
Accumulate per image evaluation results and store the result in self.eval | |
:param p: input params for evaluation | |
:return: None | |
""" | |
logger.info("Accumulating evaluation results...") | |
tic = time.time() | |
if not self.evalImgs: | |
logger.info("Please run evaluate() first") | |
# allows input customized parameters | |
if p is None: | |
p = self.params | |
p.catIds = p.catIds if p.useCats == 1 else [-1] | |
T = len(p.iouThrs) | |
R = len(p.recThrs) | |
K = len(p.catIds) if p.useCats else 1 | |
A = len(p.areaRng) | |
M = len(p.maxDets) | |
precision = -(np.ones((T, R, K, A, M))) # -1 for the precision of absent categories | |
recall = -(np.ones((T, K, A, M))) | |
# create dictionary for future indexing | |
logger.info("Categories: {}".format(p.catIds)) | |
_pe = self._paramsEval | |
catIds = _pe.catIds if _pe.useCats else [-1] | |
setK = set(catIds) | |
setA = set(map(tuple, _pe.areaRng)) | |
setM = set(_pe.maxDets) | |
setI = set(_pe.imgIds) | |
# get inds to evaluate | |
k_list = [n for n, k in enumerate(p.catIds) if k in setK] | |
m_list = [m for n, m in enumerate(p.maxDets) if m in setM] | |
a_list = [n for n, a in enumerate(map(lambda x: tuple(x), p.areaRng)) if a in setA] | |
i_list = [n for n, i in enumerate(p.imgIds) if i in setI] | |
I0 = len(_pe.imgIds) | |
A0 = len(_pe.areaRng) | |
# retrieve E at each category, area range, and max number of detections | |
for k, k0 in enumerate(k_list): | |
Nk = k0 * A0 * I0 | |
for a, a0 in enumerate(a_list): | |
Na = a0 * I0 | |
for m, maxDet in enumerate(m_list): | |
E = [self.evalImgs[Nk + Na + i] for i in i_list] | |
E = [e for e in E if e is not None] | |
if len(E) == 0: | |
continue | |
dtScores = np.concatenate([e["dtScores"][0:maxDet] for e in E]) | |
# different sorting method generates slightly different results. | |
# mergesort is used to be consistent as Matlab implementation. | |
inds = np.argsort(-dtScores, kind="mergesort") | |
dtm = np.concatenate([e["dtMatches"][:, 0:maxDet] for e in E], axis=1)[:, inds] | |
dtIg = np.concatenate([e["dtIgnore"][:, 0:maxDet] for e in E], axis=1)[:, inds] | |
gtIg = np.concatenate([e["gtIgnore"] for e in E]) | |
npig = np.count_nonzero(gtIg == 0) | |
if npig == 0: | |
continue | |
tps = np.logical_and(dtm, np.logical_not(dtIg)) | |
fps = np.logical_and(np.logical_not(dtm), np.logical_not(dtIg)) | |
tp_sum = np.cumsum(tps, axis=1).astype(dtype=float) | |
fp_sum = np.cumsum(fps, axis=1).astype(dtype=float) | |
for t, (tp, fp) in enumerate(zip(tp_sum, fp_sum)): | |
tp = np.array(tp) | |
fp = np.array(fp) | |
nd = len(tp) | |
rc = tp / npig | |
pr = tp / (fp + tp + np.spacing(1)) | |
q = np.zeros((R,)) | |
if nd: | |
recall[t, k, a, m] = rc[-1] | |
else: | |
recall[t, k, a, m] = 0 | |
# numpy is slow without cython optimization for accessing elements | |
# use python array gets significant speed improvement | |
pr = pr.tolist() | |
q = q.tolist() | |
for i in range(nd - 1, 0, -1): | |
if pr[i] > pr[i - 1]: | |
pr[i - 1] = pr[i] | |
inds = np.searchsorted(rc, p.recThrs, side="left") | |
try: | |
for ri, pi in enumerate(inds): | |
q[ri] = pr[pi] | |
except Exception: | |
pass | |
precision[t, :, k, a, m] = np.array(q) | |
logger.info( | |
"Final: max precision {}, min precision {}".format(np.max(precision), np.min(precision)) | |
) | |
self.eval = { | |
"params": p, | |
"counts": [T, R, K, A, M], | |
"date": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"), | |
"precision": precision, | |
"recall": recall, | |
} | |
toc = time.time() | |
logger.info("DONE (t={:0.2f}s).".format(toc - tic)) | |
def summarize(self): | |
""" | |
Compute and display summary metrics for evaluation results. | |
Note this function can *only* be applied on the default parameter setting | |
""" | |
def _summarize(ap=1, iouThr=None, areaRng="all", maxDets=100): | |
p = self.params | |
iStr = " {:<18} {} @[ {}={:<9} | area={:>6s} | maxDets={:>3d} ] = {:0.3f}" | |
titleStr = "Average Precision" if ap == 1 else "Average Recall" | |
typeStr = "(AP)" if ap == 1 else "(AR)" | |
measure = "IoU" | |
if self.params.iouType == "keypoints": | |
measure = "OKS" | |
elif self.params.iouType == "densepose": | |
measure = "OGPS" | |
iouStr = ( | |
"{:0.2f}:{:0.2f}".format(p.iouThrs[0], p.iouThrs[-1]) | |
if iouThr is None | |
else "{:0.2f}".format(iouThr) | |
) | |
aind = [i for i, aRng in enumerate(p.areaRngLbl) if aRng == areaRng] | |
mind = [i for i, mDet in enumerate(p.maxDets) if mDet == maxDets] | |
if ap == 1: | |
# dimension of precision: [TxRxKxAxM] | |
s = self.eval["precision"] | |
# IoU | |
if iouThr is not None: | |
t = np.where(np.abs(iouThr - p.iouThrs) < 0.001)[0] | |
s = s[t] | |
s = s[:, :, :, aind, mind] | |
else: | |
# dimension of recall: [TxKxAxM] | |
s = self.eval["recall"] | |
if iouThr is not None: | |
t = np.where(np.abs(iouThr - p.iouThrs) < 0.001)[0] | |
s = s[t] | |
s = s[:, :, aind, mind] | |
if len(s[s > -1]) == 0: | |
mean_s = -1 | |
else: | |
mean_s = np.mean(s[s > -1]) | |
logger.info(iStr.format(titleStr, typeStr, measure, iouStr, areaRng, maxDets, mean_s)) | |
return mean_s | |
def _summarizeDets(): | |
stats = np.zeros((12,)) | |
stats[0] = _summarize(1) | |
stats[1] = _summarize(1, iouThr=0.5, maxDets=self.params.maxDets[2]) | |
stats[2] = _summarize(1, iouThr=0.75, maxDets=self.params.maxDets[2]) | |
stats[3] = _summarize(1, areaRng="small", maxDets=self.params.maxDets[2]) | |
stats[4] = _summarize(1, areaRng="medium", maxDets=self.params.maxDets[2]) | |
stats[5] = _summarize(1, areaRng="large", maxDets=self.params.maxDets[2]) | |
stats[6] = _summarize(0, maxDets=self.params.maxDets[0]) | |
stats[7] = _summarize(0, maxDets=self.params.maxDets[1]) | |
stats[8] = _summarize(0, maxDets=self.params.maxDets[2]) | |
stats[9] = _summarize(0, areaRng="small", maxDets=self.params.maxDets[2]) | |
stats[10] = _summarize(0, areaRng="medium", maxDets=self.params.maxDets[2]) | |
stats[11] = _summarize(0, areaRng="large", maxDets=self.params.maxDets[2]) | |
return stats | |
def _summarizeKps(): | |
stats = np.zeros((10,)) | |
stats[0] = _summarize(1, maxDets=20) | |
stats[1] = _summarize(1, maxDets=20, iouThr=0.5) | |
stats[2] = _summarize(1, maxDets=20, iouThr=0.75) | |
stats[3] = _summarize(1, maxDets=20, areaRng="medium") | |
stats[4] = _summarize(1, maxDets=20, areaRng="large") | |
stats[5] = _summarize(0, maxDets=20) | |
stats[6] = _summarize(0, maxDets=20, iouThr=0.5) | |
stats[7] = _summarize(0, maxDets=20, iouThr=0.75) | |
stats[8] = _summarize(0, maxDets=20, areaRng="medium") | |
stats[9] = _summarize(0, maxDets=20, areaRng="large") | |
return stats | |
def _summarizeUvs(): | |
stats = [_summarize(1, maxDets=self.params.maxDets[0])] | |
min_threshold = self.params.iouThrs.min() | |
if min_threshold <= 0.201: | |
stats += [_summarize(1, maxDets=self.params.maxDets[0], iouThr=0.2)] | |
if min_threshold <= 0.301: | |
stats += [_summarize(1, maxDets=self.params.maxDets[0], iouThr=0.3)] | |
if min_threshold <= 0.401: | |
stats += [_summarize(1, maxDets=self.params.maxDets[0], iouThr=0.4)] | |
stats += [ | |
_summarize(1, maxDets=self.params.maxDets[0], iouThr=0.5), | |
_summarize(1, maxDets=self.params.maxDets[0], iouThr=0.75), | |
_summarize(1, maxDets=self.params.maxDets[0], areaRng="medium"), | |
_summarize(1, maxDets=self.params.maxDets[0], areaRng="large"), | |
_summarize(0, maxDets=self.params.maxDets[0]), | |
_summarize(0, maxDets=self.params.maxDets[0], iouThr=0.5), | |
_summarize(0, maxDets=self.params.maxDets[0], iouThr=0.75), | |
_summarize(0, maxDets=self.params.maxDets[0], areaRng="medium"), | |
_summarize(0, maxDets=self.params.maxDets[0], areaRng="large"), | |
] | |
return np.array(stats) | |
def _summarizeUvsOld(): | |
stats = np.zeros((18,)) | |
stats[0] = _summarize(1, maxDets=self.params.maxDets[0]) | |
stats[1] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.5) | |
stats[2] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.55) | |
stats[3] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.60) | |
stats[4] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.65) | |
stats[5] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.70) | |
stats[6] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.75) | |
stats[7] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.80) | |
stats[8] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.85) | |
stats[9] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.90) | |
stats[10] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.95) | |
stats[11] = _summarize(1, maxDets=self.params.maxDets[0], areaRng="medium") | |
stats[12] = _summarize(1, maxDets=self.params.maxDets[0], areaRng="large") | |
stats[13] = _summarize(0, maxDets=self.params.maxDets[0]) | |
stats[14] = _summarize(0, maxDets=self.params.maxDets[0], iouThr=0.5) | |
stats[15] = _summarize(0, maxDets=self.params.maxDets[0], iouThr=0.75) | |
stats[16] = _summarize(0, maxDets=self.params.maxDets[0], areaRng="medium") | |
stats[17] = _summarize(0, maxDets=self.params.maxDets[0], areaRng="large") | |
return stats | |
if not self.eval: | |
raise Exception("Please run accumulate() first") | |
iouType = self.params.iouType | |
if iouType in ["segm", "bbox"]: | |
summarize = _summarizeDets | |
elif iouType in ["keypoints"]: | |
summarize = _summarizeKps | |
elif iouType in ["densepose"]: | |
summarize = _summarizeUvs | |
self.stats = summarize() | |
def __str__(self): | |
self.summarize() | |
# ================ functions for dense pose ============================== | |
def findAllClosestVertsUV(self, U_points, V_points, Index_points): | |
ClosestVerts = np.ones(Index_points.shape) * -1 | |
for i in np.arange(24): | |
# | |
if (i + 1) in Index_points: | |
UVs = np.array( | |
[U_points[Index_points == (i + 1)], V_points[Index_points == (i + 1)]] | |
) | |
Current_Part_UVs = self.Part_UVs[i] | |
Current_Part_ClosestVertInds = self.Part_ClosestVertInds[i] | |
D = ssd.cdist(Current_Part_UVs.transpose(), UVs.transpose()).squeeze() | |
ClosestVerts[Index_points == (i + 1)] = Current_Part_ClosestVertInds[ | |
np.argmin(D, axis=0) | |
] | |
ClosestVertsTransformed = self.PDIST_transform[ClosestVerts.astype(int) - 1] | |
ClosestVertsTransformed[ClosestVerts < 0] = 0 | |
return ClosestVertsTransformed | |
def findClosestVertsCse(self, embedding, py, px, mask, mesh_name): | |
mesh_vertex_embeddings = self.embedder(mesh_name) | |
pixel_embeddings = embedding[:, py, px].t().to(device="cuda") | |
mask_vals = mask[py, px] | |
edm = squared_euclidean_distance_matrix(pixel_embeddings, mesh_vertex_embeddings) | |
vertex_indices = edm.argmin(dim=1).cpu() | |
vertex_indices[mask_vals <= 0] = -1 | |
return vertex_indices | |
def findAllClosestVertsGT(self, gt): | |
# | |
I_gt = np.array(gt["dp_I"]) | |
U_gt = np.array(gt["dp_U"]) | |
V_gt = np.array(gt["dp_V"]) | |
# | |
# print(I_gt) | |
# | |
ClosestVertsGT = np.ones(I_gt.shape) * -1 | |
for i in np.arange(24): | |
if (i + 1) in I_gt: | |
UVs = np.array([U_gt[I_gt == (i + 1)], V_gt[I_gt == (i + 1)]]) | |
Current_Part_UVs = self.Part_UVs[i] | |
Current_Part_ClosestVertInds = self.Part_ClosestVertInds[i] | |
D = ssd.cdist(Current_Part_UVs.transpose(), UVs.transpose()).squeeze() | |
ClosestVertsGT[I_gt == (i + 1)] = Current_Part_ClosestVertInds[np.argmin(D, axis=0)] | |
# | |
ClosestVertsGTTransformed = self.PDIST_transform[ClosestVertsGT.astype(int) - 1] | |
ClosestVertsGTTransformed[ClosestVertsGT < 0] = 0 | |
return ClosestVertsGT, ClosestVertsGTTransformed | |
def getDistancesCse(self, cVertsGT, cVerts, mesh_name): | |
geodists_vertices = torch.ones_like(cVertsGT) * float("inf") | |
selected = (cVertsGT >= 0) * (cVerts >= 0) | |
mesh = create_mesh(mesh_name, "cpu") | |
geodists_vertices[selected] = mesh.geodists[cVertsGT[selected], cVerts[selected]] | |
return geodists_vertices.numpy() | |
def getDistancesUV(self, cVertsGT, cVerts): | |
# | |
n = 27554 | |
dists = [] | |
for d in range(len(cVertsGT)): | |
if cVertsGT[d] > 0: | |
if cVerts[d] > 0: | |
i = cVertsGT[d] - 1 | |
j = cVerts[d] - 1 | |
if j == i: | |
dists.append(0) | |
elif j > i: | |
ccc = i | |
i = j | |
j = ccc | |
i = n - i - 1 | |
j = n - j - 1 | |
k = (n * (n - 1) / 2) - (n - i) * ((n - i) - 1) / 2 + j - i - 1 | |
k = (n * n - n) / 2 - k - 1 | |
dists.append(self.Pdist_matrix[int(k)][0]) | |
else: | |
i = n - i - 1 | |
j = n - j - 1 | |
k = (n * (n - 1) / 2) - (n - i) * ((n - i) - 1) / 2 + j - i - 1 | |
k = (n * n - n) / 2 - k - 1 | |
dists.append(self.Pdist_matrix[int(k)][0]) | |
else: | |
dists.append(np.inf) | |
return np.atleast_1d(np.array(dists).squeeze()) | |
class Params: | |
""" | |
Params for coco evaluation api | |
""" | |
def setDetParams(self): | |
self.imgIds = [] | |
self.catIds = [] | |
# np.arange causes trouble. the data point on arange is slightly larger than the true value | |
self.iouThrs = np.linspace(0.5, 0.95, int(np.round((0.95 - 0.5) / 0.05)) + 1, endpoint=True) | |
self.recThrs = np.linspace(0.0, 1.00, int(np.round((1.00 - 0.0) / 0.01)) + 1, endpoint=True) | |
self.maxDets = [1, 10, 100] | |
self.areaRng = [ | |
[0**2, 1e5**2], | |
[0**2, 32**2], | |
[32**2, 96**2], | |
[96**2, 1e5**2], | |
] | |
self.areaRngLbl = ["all", "small", "medium", "large"] | |
self.useCats = 1 | |
def setKpParams(self): | |
self.imgIds = [] | |
self.catIds = [] | |
# np.arange causes trouble. the data point on arange is slightly larger than the true value | |
self.iouThrs = np.linspace(0.5, 0.95, np.round((0.95 - 0.5) / 0.05) + 1, endpoint=True) | |
self.recThrs = np.linspace(0.0, 1.00, np.round((1.00 - 0.0) / 0.01) + 1, endpoint=True) | |
self.maxDets = [20] | |
self.areaRng = [[0**2, 1e5**2], [32**2, 96**2], [96**2, 1e5**2]] | |
self.areaRngLbl = ["all", "medium", "large"] | |
self.useCats = 1 | |
def setUvParams(self): | |
self.imgIds = [] | |
self.catIds = [] | |
self.iouThrs = np.linspace(0.5, 0.95, int(np.round((0.95 - 0.5) / 0.05)) + 1, endpoint=True) | |
self.recThrs = np.linspace(0.0, 1.00, int(np.round((1.00 - 0.0) / 0.01)) + 1, endpoint=True) | |
self.maxDets = [20] | |
self.areaRng = [[0**2, 1e5**2], [32**2, 96**2], [96**2, 1e5**2]] | |
self.areaRngLbl = ["all", "medium", "large"] | |
self.useCats = 1 | |
def __init__(self, iouType="segm"): | |
if iouType == "segm" or iouType == "bbox": | |
self.setDetParams() | |
elif iouType == "keypoints": | |
self.setKpParams() | |
elif iouType == "densepose": | |
self.setUvParams() | |
else: | |
raise Exception("iouType not supported") | |
self.iouType = iouType | |
# useSegm is deprecated | |
self.useSegm = None | |