Spaces:
Paused
Paused
# Copyright (c) Facebook, Inc. and its affiliates. | |
import numpy as np | |
from typing import Optional, Tuple | |
import cv2 | |
from densepose.structures import DensePoseDataRelative | |
from ..structures import DensePoseChartPredictorOutput | |
from .base import Boxes, Image, MatrixVisualizer | |
class DensePoseOutputsVisualizer: | |
def __init__( | |
self, inplace=True, cmap=cv2.COLORMAP_PARULA, alpha=0.7, to_visualize=None, **kwargs | |
): | |
assert to_visualize in "IUV", "can only visualize IUV" | |
self.to_visualize = to_visualize | |
if self.to_visualize == "I": | |
val_scale = 255.0 / DensePoseDataRelative.N_PART_LABELS | |
else: | |
val_scale = 1.0 | |
self.mask_visualizer = MatrixVisualizer( | |
inplace=inplace, cmap=cmap, val_scale=val_scale, alpha=alpha | |
) | |
def visualize( | |
self, | |
image_bgr: Image, | |
dp_output_with_bboxes: Tuple[Optional[DensePoseChartPredictorOutput], Optional[Boxes]], | |
) -> Image: | |
densepose_output, bboxes_xywh = dp_output_with_bboxes | |
if densepose_output is None or bboxes_xywh is None: | |
return image_bgr | |
assert isinstance( | |
densepose_output, DensePoseChartPredictorOutput | |
), "DensePoseChartPredictorOutput expected, {} encountered".format(type(densepose_output)) | |
S = densepose_output.coarse_segm | |
I = densepose_output.fine_segm # noqa | |
U = densepose_output.u | |
V = densepose_output.v | |
N = S.size(0) | |
assert N == I.size( | |
0 | |
), "densepose outputs S {} and I {}" " should have equal first dim size".format( | |
S.size(), I.size() | |
) | |
assert N == U.size( | |
0 | |
), "densepose outputs S {} and U {}" " should have equal first dim size".format( | |
S.size(), U.size() | |
) | |
assert N == V.size( | |
0 | |
), "densepose outputs S {} and V {}" " should have equal first dim size".format( | |
S.size(), V.size() | |
) | |
assert N == len( | |
bboxes_xywh | |
), "number of bounding boxes {}" " should be equal to first dim size of outputs {}".format( | |
len(bboxes_xywh), N | |
) | |
for n in range(N): | |
Sn = S[n].argmax(dim=0) | |
In = I[n].argmax(dim=0) * (Sn > 0).long() | |
segmentation = In.cpu().numpy().astype(np.uint8) | |
mask = np.zeros(segmentation.shape, dtype=np.uint8) | |
mask[segmentation > 0] = 1 | |
bbox_xywh = bboxes_xywh[n] | |
if self.to_visualize == "I": | |
vis = segmentation | |
elif self.to_visualize in "UV": | |
U_or_Vn = {"U": U, "V": V}[self.to_visualize][n].cpu().numpy().astype(np.float32) | |
vis = np.zeros(segmentation.shape, dtype=np.float32) | |
for partId in range(U_or_Vn.shape[0]): | |
vis[segmentation == partId] = ( | |
U_or_Vn[partId][segmentation == partId].clip(0, 1) * 255 | |
) | |
# pyre-fixme[61]: `vis` may not be initialized here. | |
image_bgr = self.mask_visualizer.visualize(image_bgr, mask, vis, bbox_xywh) | |
return image_bgr | |
class DensePoseOutputsUVisualizer(DensePoseOutputsVisualizer): | |
def __init__(self, inplace=True, cmap=cv2.COLORMAP_PARULA, alpha=0.7, **kwargs): | |
super().__init__(inplace=inplace, cmap=cmap, alpha=alpha, to_visualize="U", **kwargs) | |
class DensePoseOutputsVVisualizer(DensePoseOutputsVisualizer): | |
def __init__(self, inplace=True, cmap=cv2.COLORMAP_PARULA, alpha=0.7, **kwargs): | |
super().__init__(inplace=inplace, cmap=cmap, alpha=alpha, to_visualize="V", **kwargs) | |
class DensePoseOutputsFineSegmentationVisualizer(DensePoseOutputsVisualizer): | |
def __init__(self, inplace=True, cmap=cv2.COLORMAP_PARULA, alpha=0.7, **kwargs): | |
super().__init__(inplace=inplace, cmap=cmap, alpha=alpha, to_visualize="I", **kwargs) | |