Spaces:
Paused
Paused
# -*- coding: utf-8 -*- | |
# Copyright (c) Facebook, Inc. and its affiliates. | |
import logging | |
from typing import Dict, List | |
import torch | |
from torch import nn | |
from detectron2.config import configurable | |
from detectron2.structures import ImageList | |
from ..postprocessing import detector_postprocess, sem_seg_postprocess | |
from .build import META_ARCH_REGISTRY | |
from .rcnn import GeneralizedRCNN | |
from .semantic_seg import build_sem_seg_head | |
__all__ = ["PanopticFPN"] | |
class PanopticFPN(GeneralizedRCNN): | |
""" | |
Implement the paper :paper:`PanopticFPN`. | |
""" | |
def __init__( | |
self, | |
*, | |
sem_seg_head: nn.Module, | |
combine_overlap_thresh: float = 0.5, | |
combine_stuff_area_thresh: float = 4096, | |
combine_instances_score_thresh: float = 0.5, | |
**kwargs, | |
): | |
""" | |
NOTE: this interface is experimental. | |
Args: | |
sem_seg_head: a module for the semantic segmentation head. | |
combine_overlap_thresh: combine masks into one instances if | |
they have enough overlap | |
combine_stuff_area_thresh: ignore stuff areas smaller than this threshold | |
combine_instances_score_thresh: ignore instances whose score is | |
smaller than this threshold | |
Other arguments are the same as :class:`GeneralizedRCNN`. | |
""" | |
super().__init__(**kwargs) | |
self.sem_seg_head = sem_seg_head | |
# options when combining instance & semantic outputs | |
self.combine_overlap_thresh = combine_overlap_thresh | |
self.combine_stuff_area_thresh = combine_stuff_area_thresh | |
self.combine_instances_score_thresh = combine_instances_score_thresh | |
def from_config(cls, cfg): | |
ret = super().from_config(cfg) | |
ret.update( | |
{ | |
"combine_overlap_thresh": cfg.MODEL.PANOPTIC_FPN.COMBINE.OVERLAP_THRESH, | |
"combine_stuff_area_thresh": cfg.MODEL.PANOPTIC_FPN.COMBINE.STUFF_AREA_LIMIT, | |
"combine_instances_score_thresh": cfg.MODEL.PANOPTIC_FPN.COMBINE.INSTANCES_CONFIDENCE_THRESH, # noqa | |
} | |
) | |
ret["sem_seg_head"] = build_sem_seg_head(cfg, ret["backbone"].output_shape()) | |
logger = logging.getLogger(__name__) | |
if not cfg.MODEL.PANOPTIC_FPN.COMBINE.ENABLED: | |
logger.warning( | |
"PANOPTIC_FPN.COMBINED.ENABLED is no longer used. " | |
" model.inference(do_postprocess=) should be used to toggle postprocessing." | |
) | |
if cfg.MODEL.PANOPTIC_FPN.INSTANCE_LOSS_WEIGHT != 1.0: | |
w = cfg.MODEL.PANOPTIC_FPN.INSTANCE_LOSS_WEIGHT | |
logger.warning( | |
"PANOPTIC_FPN.INSTANCE_LOSS_WEIGHT should be replaced by weights on each ROI head." | |
) | |
def update_weight(x): | |
if isinstance(x, dict): | |
return {k: v * w for k, v in x.items()} | |
else: | |
return x * w | |
roi_heads = ret["roi_heads"] | |
roi_heads.box_predictor.loss_weight = update_weight(roi_heads.box_predictor.loss_weight) | |
roi_heads.mask_head.loss_weight = update_weight(roi_heads.mask_head.loss_weight) | |
return ret | |
def forward(self, batched_inputs): | |
""" | |
Args: | |
batched_inputs: a list, batched outputs of :class:`DatasetMapper`. | |
Each item in the list contains the inputs for one image. | |
For now, each item in the list is a dict that contains: | |
* "image": Tensor, image in (C, H, W) format. | |
* "instances": Instances | |
* "sem_seg": semantic segmentation ground truth. | |
* Other information that's included in the original dicts, such as: | |
"height", "width" (int): the output resolution of the model, used in inference. | |
See :meth:`postprocess` for details. | |
Returns: | |
list[dict]: | |
each dict has the results for one image. The dict contains the following keys: | |
* "instances": see :meth:`GeneralizedRCNN.forward` for its format. | |
* "sem_seg": see :meth:`SemanticSegmentor.forward` for its format. | |
* "panoptic_seg": See the return value of | |
:func:`combine_semantic_and_instance_outputs` for its format. | |
""" | |
if not self.training: | |
return self.inference(batched_inputs) | |
images = self.preprocess_image(batched_inputs) | |
features = self.backbone(images.tensor) | |
assert "sem_seg" in batched_inputs[0] | |
gt_sem_seg = [x["sem_seg"].to(self.device) for x in batched_inputs] | |
gt_sem_seg = ImageList.from_tensors( | |
gt_sem_seg, | |
self.backbone.size_divisibility, | |
self.sem_seg_head.ignore_value, | |
self.backbone.padding_constraints, | |
).tensor | |
sem_seg_results, sem_seg_losses = self.sem_seg_head(features, gt_sem_seg) | |
gt_instances = [x["instances"].to(self.device) for x in batched_inputs] | |
proposals, proposal_losses = self.proposal_generator(images, features, gt_instances) | |
detector_results, detector_losses = self.roi_heads( | |
images, features, proposals, gt_instances | |
) | |
losses = sem_seg_losses | |
losses.update(proposal_losses) | |
losses.update(detector_losses) | |
return losses | |
def inference(self, batched_inputs: List[Dict[str, torch.Tensor]], do_postprocess: bool = True): | |
""" | |
Run inference on the given inputs. | |
Args: | |
batched_inputs (list[dict]): same as in :meth:`forward` | |
do_postprocess (bool): whether to apply post-processing on the outputs. | |
Returns: | |
When do_postprocess=True, see docs in :meth:`forward`. | |
Otherwise, returns a (list[Instances], list[Tensor]) that contains | |
the raw detector outputs, and raw semantic segmentation outputs. | |
""" | |
images = self.preprocess_image(batched_inputs) | |
features = self.backbone(images.tensor) | |
sem_seg_results, sem_seg_losses = self.sem_seg_head(features, None) | |
proposals, _ = self.proposal_generator(images, features, None) | |
detector_results, _ = self.roi_heads(images, features, proposals, None) | |
if do_postprocess: | |
processed_results = [] | |
for sem_seg_result, detector_result, input_per_image, image_size in zip( | |
sem_seg_results, detector_results, batched_inputs, images.image_sizes | |
): | |
height = input_per_image.get("height", image_size[0]) | |
width = input_per_image.get("width", image_size[1]) | |
sem_seg_r = sem_seg_postprocess(sem_seg_result, image_size, height, width) | |
detector_r = detector_postprocess(detector_result, height, width) | |
processed_results.append({"sem_seg": sem_seg_r, "instances": detector_r}) | |
panoptic_r = combine_semantic_and_instance_outputs( | |
detector_r, | |
sem_seg_r.argmax(dim=0), | |
self.combine_overlap_thresh, | |
self.combine_stuff_area_thresh, | |
self.combine_instances_score_thresh, | |
) | |
processed_results[-1]["panoptic_seg"] = panoptic_r | |
return processed_results | |
else: | |
return detector_results, sem_seg_results | |
def combine_semantic_and_instance_outputs( | |
instance_results, | |
semantic_results, | |
overlap_threshold, | |
stuff_area_thresh, | |
instances_score_thresh, | |
): | |
""" | |
Implement a simple combining logic following | |
"combine_semantic_and_instance_predictions.py" in panopticapi | |
to produce panoptic segmentation outputs. | |
Args: | |
instance_results: output of :func:`detector_postprocess`. | |
semantic_results: an (H, W) tensor, each element is the contiguous semantic | |
category id | |
Returns: | |
panoptic_seg (Tensor): of shape (height, width) where the values are ids for each segment. | |
segments_info (list[dict]): Describe each segment in `panoptic_seg`. | |
Each dict contains keys "id", "category_id", "isthing". | |
""" | |
panoptic_seg = torch.zeros_like(semantic_results, dtype=torch.int32) | |
# sort instance outputs by scores | |
sorted_inds = torch.argsort(-instance_results.scores) | |
current_segment_id = 0 | |
segments_info = [] | |
instance_masks = instance_results.pred_masks.to(dtype=torch.bool, device=panoptic_seg.device) | |
# Add instances one-by-one, check for overlaps with existing ones | |
for inst_id in sorted_inds: | |
score = instance_results.scores[inst_id].item() | |
if score < instances_score_thresh: | |
break | |
mask = instance_masks[inst_id] # H,W | |
mask_area = mask.sum().item() | |
if mask_area == 0: | |
continue | |
intersect = (mask > 0) & (panoptic_seg > 0) | |
intersect_area = intersect.sum().item() | |
if intersect_area * 1.0 / mask_area > overlap_threshold: | |
continue | |
if intersect_area > 0: | |
mask = mask & (panoptic_seg == 0) | |
current_segment_id += 1 | |
panoptic_seg[mask] = current_segment_id | |
segments_info.append( | |
{ | |
"id": current_segment_id, | |
"isthing": True, | |
"score": score, | |
"category_id": instance_results.pred_classes[inst_id].item(), | |
"instance_id": inst_id.item(), | |
} | |
) | |
# Add semantic results to remaining empty areas | |
semantic_labels = torch.unique(semantic_results).cpu().tolist() | |
for semantic_label in semantic_labels: | |
if semantic_label == 0: # 0 is a special "thing" class | |
continue | |
mask = (semantic_results == semantic_label) & (panoptic_seg == 0) | |
mask_area = mask.sum().item() | |
if mask_area < stuff_area_thresh: | |
continue | |
current_segment_id += 1 | |
panoptic_seg[mask] = current_segment_id | |
segments_info.append( | |
{ | |
"id": current_segment_id, | |
"isthing": False, | |
"category_id": semantic_label, | |
"area": mask_area, | |
} | |
) | |
return panoptic_seg, segments_info | |