Spaces:
Paused
Paused
# Copyright (c) Facebook, Inc. and its affiliates. | |
import logging | |
import os | |
from typing import Any, Dict, Iterable, List, Optional | |
from fvcore.common.timer import Timer | |
from detectron2.data import DatasetCatalog, MetadataCatalog | |
from detectron2.data.datasets.lvis import get_lvis_instances_meta | |
from detectron2.structures import BoxMode | |
from detectron2.utils.file_io import PathManager | |
from ..utils import maybe_prepend_base_path | |
from .coco import ( | |
DENSEPOSE_ALL_POSSIBLE_KEYS, | |
DENSEPOSE_METADATA_URL_PREFIX, | |
CocoDatasetInfo, | |
get_metadata, | |
) | |
DATASETS = [ | |
CocoDatasetInfo( | |
name="densepose_lvis_v1_ds1_train_v1", | |
images_root="coco_", | |
annotations_fpath="lvis/densepose_lvis_v1_ds1_train_v1.json", | |
), | |
CocoDatasetInfo( | |
name="densepose_lvis_v1_ds1_val_v1", | |
images_root="coco_", | |
annotations_fpath="lvis/densepose_lvis_v1_ds1_val_v1.json", | |
), | |
CocoDatasetInfo( | |
name="densepose_lvis_v1_ds2_train_v1", | |
images_root="coco_", | |
annotations_fpath="lvis/densepose_lvis_v1_ds2_train_v1.json", | |
), | |
CocoDatasetInfo( | |
name="densepose_lvis_v1_ds2_val_v1", | |
images_root="coco_", | |
annotations_fpath="lvis/densepose_lvis_v1_ds2_val_v1.json", | |
), | |
CocoDatasetInfo( | |
name="densepose_lvis_v1_ds1_val_animals_100", | |
images_root="coco_", | |
annotations_fpath="lvis/densepose_lvis_v1_val_animals_100_v2.json", | |
), | |
] | |
def _load_lvis_annotations(json_file: str): | |
""" | |
Load COCO annotations from a JSON file | |
Args: | |
json_file: str | |
Path to the file to load annotations from | |
Returns: | |
Instance of `pycocotools.coco.COCO` that provides access to annotations | |
data | |
""" | |
from lvis import LVIS | |
json_file = PathManager.get_local_path(json_file) | |
logger = logging.getLogger(__name__) | |
timer = Timer() | |
lvis_api = LVIS(json_file) | |
if timer.seconds() > 1: | |
logger.info("Loading {} takes {:.2f} seconds.".format(json_file, timer.seconds())) | |
return lvis_api | |
def _add_categories_metadata(dataset_name: str) -> None: | |
metadict = get_lvis_instances_meta(dataset_name) | |
categories = metadict["thing_classes"] | |
metadata = MetadataCatalog.get(dataset_name) | |
metadata.categories = {i + 1: categories[i] for i in range(len(categories))} | |
logger = logging.getLogger(__name__) | |
logger.info(f"Dataset {dataset_name} has {len(categories)} categories") | |
def _verify_annotations_have_unique_ids(json_file: str, anns: List[List[Dict[str, Any]]]) -> None: | |
ann_ids = [ann["id"] for anns_per_image in anns for ann in anns_per_image] | |
assert len(set(ann_ids)) == len(ann_ids), "Annotation ids in '{}' are not unique!".format( | |
json_file | |
) | |
def _maybe_add_bbox(obj: Dict[str, Any], ann_dict: Dict[str, Any]) -> None: | |
if "bbox" not in ann_dict: | |
return | |
obj["bbox"] = ann_dict["bbox"] | |
obj["bbox_mode"] = BoxMode.XYWH_ABS | |
def _maybe_add_segm(obj: Dict[str, Any], ann_dict: Dict[str, Any]) -> None: | |
if "segmentation" not in ann_dict: | |
return | |
segm = ann_dict["segmentation"] | |
if not isinstance(segm, dict): | |
# filter out invalid polygons (< 3 points) | |
segm = [poly for poly in segm if len(poly) % 2 == 0 and len(poly) >= 6] | |
if len(segm) == 0: | |
return | |
obj["segmentation"] = segm | |
def _maybe_add_keypoints(obj: Dict[str, Any], ann_dict: Dict[str, Any]) -> None: | |
if "keypoints" not in ann_dict: | |
return | |
keypts = ann_dict["keypoints"] # list[int] | |
for idx, v in enumerate(keypts): | |
if idx % 3 != 2: | |
# COCO's segmentation coordinates are floating points in [0, H or W], | |
# but keypoint coordinates are integers in [0, H-1 or W-1] | |
# Therefore we assume the coordinates are "pixel indices" and | |
# add 0.5 to convert to floating point coordinates. | |
keypts[idx] = v + 0.5 | |
obj["keypoints"] = keypts | |
def _maybe_add_densepose(obj: Dict[str, Any], ann_dict: Dict[str, Any]) -> None: | |
for key in DENSEPOSE_ALL_POSSIBLE_KEYS: | |
if key in ann_dict: | |
obj[key] = ann_dict[key] | |
def _combine_images_with_annotations( | |
dataset_name: str, | |
image_root: str, | |
img_datas: Iterable[Dict[str, Any]], | |
ann_datas: Iterable[Iterable[Dict[str, Any]]], | |
): | |
dataset_dicts = [] | |
def get_file_name(img_root, img_dict): | |
# Determine the path including the split folder ("train2017", "val2017", "test2017") from | |
# the coco_url field. Example: | |
# 'coco_url': 'http://images.cocodataset.org/train2017/000000155379.jpg' | |
split_folder, file_name = img_dict["coco_url"].split("/")[-2:] | |
return os.path.join(img_root + split_folder, file_name) | |
for img_dict, ann_dicts in zip(img_datas, ann_datas): | |
record = {} | |
record["file_name"] = get_file_name(image_root, img_dict) | |
record["height"] = img_dict["height"] | |
record["width"] = img_dict["width"] | |
record["not_exhaustive_category_ids"] = img_dict.get("not_exhaustive_category_ids", []) | |
record["neg_category_ids"] = img_dict.get("neg_category_ids", []) | |
record["image_id"] = img_dict["id"] | |
record["dataset"] = dataset_name | |
objs = [] | |
for ann_dict in ann_dicts: | |
assert ann_dict["image_id"] == record["image_id"] | |
obj = {} | |
_maybe_add_bbox(obj, ann_dict) | |
obj["iscrowd"] = ann_dict.get("iscrowd", 0) | |
obj["category_id"] = ann_dict["category_id"] | |
_maybe_add_segm(obj, ann_dict) | |
_maybe_add_keypoints(obj, ann_dict) | |
_maybe_add_densepose(obj, ann_dict) | |
objs.append(obj) | |
record["annotations"] = objs | |
dataset_dicts.append(record) | |
return dataset_dicts | |
def load_lvis_json(annotations_json_file: str, image_root: str, dataset_name: str): | |
""" | |
Loads a JSON file with annotations in LVIS instances format. | |
Replaces `detectron2.data.datasets.coco.load_lvis_json` to handle metadata | |
in a more flexible way. Postpones category mapping to a later stage to be | |
able to combine several datasets with different (but coherent) sets of | |
categories. | |
Args: | |
annotations_json_file: str | |
Path to the JSON file with annotations in COCO instances format. | |
image_root: str | |
directory that contains all the images | |
dataset_name: str | |
the name that identifies a dataset, e.g. "densepose_coco_2014_train" | |
extra_annotation_keys: Optional[List[str]] | |
If provided, these keys are used to extract additional data from | |
the annotations. | |
""" | |
lvis_api = _load_lvis_annotations(PathManager.get_local_path(annotations_json_file)) | |
_add_categories_metadata(dataset_name) | |
# sort indices for reproducible results | |
img_ids = sorted(lvis_api.imgs.keys()) | |
# imgs is a list of dicts, each looks something like: | |
# {'license': 4, | |
# 'url': 'http://farm6.staticflickr.com/5454/9413846304_881d5e5c3b_z.jpg', | |
# 'file_name': 'COCO_val2014_000000001268.jpg', | |
# 'height': 427, | |
# 'width': 640, | |
# 'date_captured': '2013-11-17 05:57:24', | |
# 'id': 1268} | |
imgs = lvis_api.load_imgs(img_ids) | |
logger = logging.getLogger(__name__) | |
logger.info("Loaded {} images in LVIS format from {}".format(len(imgs), annotations_json_file)) | |
# anns is a list[list[dict]], where each dict is an annotation | |
# record for an object. The inner list enumerates the objects in an image | |
# and the outer list enumerates over images. | |
anns = [lvis_api.img_ann_map[img_id] for img_id in img_ids] | |
_verify_annotations_have_unique_ids(annotations_json_file, anns) | |
dataset_records = _combine_images_with_annotations(dataset_name, image_root, imgs, anns) | |
return dataset_records | |
def register_dataset(dataset_data: CocoDatasetInfo, datasets_root: Optional[str] = None) -> None: | |
""" | |
Registers provided LVIS DensePose dataset | |
Args: | |
dataset_data: CocoDatasetInfo | |
Dataset data | |
datasets_root: Optional[str] | |
Datasets root folder (default: None) | |
""" | |
annotations_fpath = maybe_prepend_base_path(datasets_root, dataset_data.annotations_fpath) | |
images_root = maybe_prepend_base_path(datasets_root, dataset_data.images_root) | |
def load_annotations(): | |
return load_lvis_json( | |
annotations_json_file=annotations_fpath, | |
image_root=images_root, | |
dataset_name=dataset_data.name, | |
) | |
DatasetCatalog.register(dataset_data.name, load_annotations) | |
MetadataCatalog.get(dataset_data.name).set( | |
json_file=annotations_fpath, | |
image_root=images_root, | |
evaluator_type="lvis", | |
**get_metadata(DENSEPOSE_METADATA_URL_PREFIX), | |
) | |
def register_datasets( | |
datasets_data: Iterable[CocoDatasetInfo], datasets_root: Optional[str] = None | |
) -> None: | |
""" | |
Registers provided LVIS DensePose datasets | |
Args: | |
datasets_data: Iterable[CocoDatasetInfo] | |
An iterable of dataset datas | |
datasets_root: Optional[str] | |
Datasets root folder (default: None) | |
""" | |
for dataset_data in datasets_data: | |
register_dataset(dataset_data, datasets_root) | |