Spaces:
Paused
Paused
import numpy as np | |
from typing import Dict, List, Optional, Tuple | |
import torch | |
from torch import Tensor, nn | |
from detectron2.data.detection_utils import convert_image_to_rgb | |
from detectron2.layers import move_device_like | |
from detectron2.modeling import Backbone | |
from detectron2.structures import Boxes, ImageList, Instances | |
from detectron2.utils.events import get_event_storage | |
from ..postprocessing import detector_postprocess | |
def permute_to_N_HWA_K(tensor, K: int): | |
""" | |
Transpose/reshape a tensor from (N, (Ai x K), H, W) to (N, (HxWxAi), K) | |
""" | |
assert tensor.dim() == 4, tensor.shape | |
N, _, H, W = tensor.shape | |
tensor = tensor.view(N, -1, K, H, W) | |
tensor = tensor.permute(0, 3, 4, 1, 2) | |
tensor = tensor.reshape(N, -1, K) # Size=(N,HWA,K) | |
return tensor | |
class DenseDetector(nn.Module): | |
""" | |
Base class for dense detector. We define a dense detector as a fully-convolutional model that | |
makes per-pixel (i.e. dense) predictions. | |
""" | |
def __init__( | |
self, | |
backbone: Backbone, | |
head: nn.Module, | |
head_in_features: Optional[List[str]] = None, | |
*, | |
pixel_mean, | |
pixel_std, | |
): | |
""" | |
Args: | |
backbone: backbone module | |
head: head module | |
head_in_features: backbone features to use in head. Default to all backbone features. | |
pixel_mean (Tuple[float]): | |
Values to be used for image normalization (BGR order). | |
To train on images of different number of channels, set different mean & std. | |
Default values are the mean pixel value from ImageNet: [103.53, 116.28, 123.675] | |
pixel_std (Tuple[float]): | |
When using pre-trained models in Detectron1 or any MSRA models, | |
std has been absorbed into its conv1 weights, so the std needs to be set 1. | |
Otherwise, you can use [57.375, 57.120, 58.395] (ImageNet std) | |
""" | |
super().__init__() | |
self.backbone = backbone | |
self.head = head | |
if head_in_features is None: | |
shapes = self.backbone.output_shape() | |
self.head_in_features = sorted(shapes.keys(), key=lambda x: shapes[x].stride) | |
else: | |
self.head_in_features = head_in_features | |
self.register_buffer("pixel_mean", torch.tensor(pixel_mean).view(-1, 1, 1), False) | |
self.register_buffer("pixel_std", torch.tensor(pixel_std).view(-1, 1, 1), False) | |
def device(self): | |
return self.pixel_mean.device | |
def _move_to_current_device(self, x): | |
return move_device_like(x, self.pixel_mean) | |
def forward(self, batched_inputs: List[Dict[str, Tensor]]): | |
""" | |
Args: | |
batched_inputs: a list, batched outputs of :class:`DatasetMapper` . | |
Each item in the list contains the inputs for one image. | |
For now, each item in the list is a dict that contains: | |
* image: Tensor, image in (C, H, W) format. | |
* instances: Instances | |
Other information that's included in the original dicts, such as: | |
* "height", "width" (int): the output resolution of the model, used in inference. | |
See :meth:`postprocess` for details. | |
Returns: | |
In training, dict[str, Tensor]: mapping from a named loss to a tensor storing the | |
loss. Used during training only. In inference, the standard output format, described | |
in :doc:`/tutorials/models`. | |
""" | |
images = self.preprocess_image(batched_inputs) | |
features = self.backbone(images.tensor) | |
features = [features[f] for f in self.head_in_features] | |
predictions = self.head(features) | |
if self.training: | |
assert not torch.jit.is_scripting(), "Not supported" | |
assert "instances" in batched_inputs[0], "Instance annotations are missing in training!" | |
gt_instances = [x["instances"].to(self.device) for x in batched_inputs] | |
return self.forward_training(images, features, predictions, gt_instances) | |
else: | |
results = self.forward_inference(images, features, predictions) | |
if torch.jit.is_scripting(): | |
return results | |
processed_results = [] | |
for results_per_image, input_per_image, image_size in zip( | |
results, batched_inputs, images.image_sizes | |
): | |
height = input_per_image.get("height", image_size[0]) | |
width = input_per_image.get("width", image_size[1]) | |
r = detector_postprocess(results_per_image, height, width) | |
processed_results.append({"instances": r}) | |
return processed_results | |
def forward_training(self, images, features, predictions, gt_instances): | |
raise NotImplementedError() | |
def preprocess_image(self, batched_inputs: List[Dict[str, Tensor]]): | |
""" | |
Normalize, pad and batch the input images. | |
""" | |
images = [self._move_to_current_device(x["image"]) for x in batched_inputs] | |
images = [(x - self.pixel_mean) / self.pixel_std for x in images] | |
images = ImageList.from_tensors( | |
images, | |
self.backbone.size_divisibility, | |
padding_constraints=self.backbone.padding_constraints, | |
) | |
return images | |
def _transpose_dense_predictions( | |
self, predictions: List[List[Tensor]], dims_per_anchor: List[int] | |
) -> List[List[Tensor]]: | |
""" | |
Transpose the dense per-level predictions. | |
Args: | |
predictions: a list of outputs, each is a list of per-level | |
predictions with shape (N, Ai x K, Hi, Wi), where N is the | |
number of images, Ai is the number of anchors per location on | |
level i, K is the dimension of predictions per anchor. | |
dims_per_anchor: the value of K for each predictions. e.g. 4 for | |
box prediction, #classes for classification prediction. | |
Returns: | |
List[List[Tensor]]: each prediction is transposed to (N, Hi x Wi x Ai, K). | |
""" | |
assert len(predictions) == len(dims_per_anchor) | |
res: List[List[Tensor]] = [] | |
for pred, dim_per_anchor in zip(predictions, dims_per_anchor): | |
pred = [permute_to_N_HWA_K(x, dim_per_anchor) for x in pred] | |
res.append(pred) | |
return res | |
def _ema_update(self, name: str, value: float, initial_value: float, momentum: float = 0.9): | |
""" | |
Apply EMA update to `self.name` using `value`. | |
This is mainly used for loss normalizer. In Detectron1, loss is normalized by number | |
of foreground samples in the batch. When batch size is 1 per GPU, #foreground has a | |
large variance and using it lead to lower performance. Therefore we maintain an EMA of | |
#foreground to stabilize the normalizer. | |
Args: | |
name: name of the normalizer | |
value: the new value to update | |
initial_value: the initial value to start with | |
momentum: momentum of EMA | |
Returns: | |
float: the updated EMA value | |
""" | |
if hasattr(self, name): | |
old = getattr(self, name) | |
else: | |
old = initial_value | |
new = old * momentum + value * (1 - momentum) | |
setattr(self, name, new) | |
return new | |
def _decode_per_level_predictions( | |
self, | |
anchors: Boxes, | |
pred_scores: Tensor, | |
pred_deltas: Tensor, | |
score_thresh: float, | |
topk_candidates: int, | |
image_size: Tuple[int, int], | |
) -> Instances: | |
""" | |
Decode boxes and classification predictions of one featuer level, by | |
the following steps: | |
1. filter the predictions based on score threshold and top K scores. | |
2. transform the box regression outputs | |
3. return the predicted scores, classes and boxes | |
Args: | |
anchors: Boxes, anchor for this feature level | |
pred_scores: HxWxA,K | |
pred_deltas: HxWxA,4 | |
Returns: | |
Instances: with field "scores", "pred_boxes", "pred_classes". | |
""" | |
# Apply two filtering to make NMS faster. | |
# 1. Keep boxes with confidence score higher than threshold | |
keep_idxs = pred_scores > score_thresh | |
pred_scores = pred_scores[keep_idxs] | |
topk_idxs = torch.nonzero(keep_idxs) # Kx2 | |
# 2. Keep top k top scoring boxes only | |
topk_idxs_size = topk_idxs.shape[0] | |
if isinstance(topk_idxs_size, Tensor): | |
# It's a tensor in tracing | |
num_topk = torch.clamp(topk_idxs_size, max=topk_candidates) | |
else: | |
num_topk = min(topk_idxs_size, topk_candidates) | |
pred_scores, idxs = pred_scores.topk(num_topk) | |
topk_idxs = topk_idxs[idxs] | |
anchor_idxs, classes_idxs = topk_idxs.unbind(dim=1) | |
pred_boxes = self.box2box_transform.apply_deltas( | |
pred_deltas[anchor_idxs], anchors.tensor[anchor_idxs] | |
) | |
return Instances( | |
image_size, pred_boxes=Boxes(pred_boxes), scores=pred_scores, pred_classes=classes_idxs | |
) | |
def _decode_multi_level_predictions( | |
self, | |
anchors: List[Boxes], | |
pred_scores: List[Tensor], | |
pred_deltas: List[Tensor], | |
score_thresh: float, | |
topk_candidates: int, | |
image_size: Tuple[int, int], | |
) -> Instances: | |
""" | |
Run `_decode_per_level_predictions` for all feature levels and concat the results. | |
""" | |
predictions = [ | |
self._decode_per_level_predictions( | |
anchors_i, | |
box_cls_i, | |
box_reg_i, | |
score_thresh, | |
topk_candidates, | |
image_size, | |
) | |
# Iterate over every feature level | |
for box_cls_i, box_reg_i, anchors_i in zip(pred_scores, pred_deltas, anchors) | |
] | |
return predictions[0].cat(predictions) # 'Instances.cat' is not scriptale but this is | |
def visualize_training(self, batched_inputs, results): | |
""" | |
A function used to visualize ground truth images and final network predictions. | |
It shows ground truth bounding boxes on the original image and up to 20 | |
predicted object bounding boxes on the original image. | |
Args: | |
batched_inputs (list): a list that contains input to the model. | |
results (List[Instances]): a list of #images elements returned by forward_inference(). | |
""" | |
from detectron2.utils.visualizer import Visualizer | |
assert len(batched_inputs) == len( | |
results | |
), "Cannot visualize inputs and results of different sizes" | |
storage = get_event_storage() | |
max_boxes = 20 | |
image_index = 0 # only visualize a single image | |
img = batched_inputs[image_index]["image"] | |
img = convert_image_to_rgb(img.permute(1, 2, 0), self.input_format) | |
v_gt = Visualizer(img, None) | |
v_gt = v_gt.overlay_instances(boxes=batched_inputs[image_index]["instances"].gt_boxes) | |
anno_img = v_gt.get_image() | |
processed_results = detector_postprocess(results[image_index], img.shape[0], img.shape[1]) | |
predicted_boxes = processed_results.pred_boxes.tensor.detach().cpu().numpy() | |
v_pred = Visualizer(img, None) | |
v_pred = v_pred.overlay_instances(boxes=predicted_boxes[0:max_boxes]) | |
prop_img = v_pred.get_image() | |
vis_img = np.vstack((anno_img, prop_img)) | |
vis_img = vis_img.transpose(2, 0, 1) | |
vis_name = f"Top: GT bounding boxes; Bottom: {max_boxes} Highest Scoring Results" | |
storage.put_image(vis_name, vis_img) | |