Spaces:
Paused
Paused
# Copyright (c) Facebook, Inc. and its affiliates. | |
import logging | |
from typing import Callable, Dict, List, Optional, Tuple, Union | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from detectron2.config import configurable | |
from detectron2.data.detection_utils import get_fed_loss_cls_weights | |
from detectron2.layers import ShapeSpec, batched_nms, cat, cross_entropy, nonzero_tuple | |
from detectron2.modeling.box_regression import Box2BoxTransform, _dense_box_regression_loss | |
from detectron2.structures import Boxes, Instances | |
from detectron2.utils.events import get_event_storage | |
__all__ = ["fast_rcnn_inference", "FastRCNNOutputLayers"] | |
logger = logging.getLogger(__name__) | |
""" | |
Shape shorthand in this module: | |
N: number of images in the minibatch | |
R: number of ROIs, combined over all images, in the minibatch | |
Ri: number of ROIs in image i | |
K: number of foreground classes. E.g.,there are 80 foreground classes in COCO. | |
Naming convention: | |
deltas: refers to the 4-d (dx, dy, dw, dh) deltas that parameterize the box2box | |
transform (see :class:`box_regression.Box2BoxTransform`). | |
pred_class_logits: predicted class scores in [-inf, +inf]; use | |
softmax(pred_class_logits) to estimate P(class). | |
gt_classes: ground-truth classification labels in [0, K], where [0, K) represent | |
foreground object classes and K represents the background class. | |
pred_proposal_deltas: predicted box2box transform deltas for transforming proposals | |
to detection box predictions. | |
gt_proposal_deltas: ground-truth box2box transform deltas | |
""" | |
def fast_rcnn_inference( | |
boxes: List[torch.Tensor], | |
scores: List[torch.Tensor], | |
image_shapes: List[Tuple[int, int]], | |
score_thresh: float, | |
nms_thresh: float, | |
topk_per_image: int, | |
): | |
""" | |
Call `fast_rcnn_inference_single_image` for all images. | |
Args: | |
boxes (list[Tensor]): A list of Tensors of predicted class-specific or class-agnostic | |
boxes for each image. Element i has shape (Ri, K * 4) if doing | |
class-specific regression, or (Ri, 4) if doing class-agnostic | |
regression, where Ri is the number of predicted objects for image i. | |
This is compatible with the output of :meth:`FastRCNNOutputLayers.predict_boxes`. | |
scores (list[Tensor]): A list of Tensors of predicted class scores for each image. | |
Element i has shape (Ri, K + 1), where Ri is the number of predicted objects | |
for image i. Compatible with the output of :meth:`FastRCNNOutputLayers.predict_probs`. | |
image_shapes (list[tuple]): A list of (width, height) tuples for each image in the batch. | |
score_thresh (float): Only return detections with a confidence score exceeding this | |
threshold. | |
nms_thresh (float): The threshold to use for box non-maximum suppression. Value in [0, 1]. | |
topk_per_image (int): The number of top scoring detections to return. Set < 0 to return | |
all detections. | |
Returns: | |
instances: (list[Instances]): A list of N instances, one for each image in the batch, | |
that stores the topk most confidence detections. | |
kept_indices: (list[Tensor]): A list of 1D tensor of length of N, each element indicates | |
the corresponding boxes/scores index in [0, Ri) from the input, for image i. | |
""" | |
result_per_image = [ | |
fast_rcnn_inference_single_image( | |
boxes_per_image, scores_per_image, image_shape, score_thresh, nms_thresh, topk_per_image | |
) | |
for scores_per_image, boxes_per_image, image_shape in zip(scores, boxes, image_shapes) | |
] | |
return [x[0] for x in result_per_image], [x[1] for x in result_per_image] | |
def _log_classification_stats(pred_logits, gt_classes, prefix="fast_rcnn"): | |
""" | |
Log the classification metrics to EventStorage. | |
Args: | |
pred_logits: Rx(K+1) logits. The last column is for background class. | |
gt_classes: R labels | |
""" | |
num_instances = gt_classes.numel() | |
if num_instances == 0: | |
return | |
pred_classes = pred_logits.argmax(dim=1) | |
bg_class_ind = pred_logits.shape[1] - 1 | |
fg_inds = (gt_classes >= 0) & (gt_classes < bg_class_ind) | |
num_fg = fg_inds.nonzero().numel() | |
fg_gt_classes = gt_classes[fg_inds] | |
fg_pred_classes = pred_classes[fg_inds] | |
num_false_negative = (fg_pred_classes == bg_class_ind).nonzero().numel() | |
num_accurate = (pred_classes == gt_classes).nonzero().numel() | |
fg_num_accurate = (fg_pred_classes == fg_gt_classes).nonzero().numel() | |
storage = get_event_storage() | |
storage.put_scalar(f"{prefix}/cls_accuracy", num_accurate / num_instances) | |
if num_fg > 0: | |
storage.put_scalar(f"{prefix}/fg_cls_accuracy", fg_num_accurate / num_fg) | |
storage.put_scalar(f"{prefix}/false_negative", num_false_negative / num_fg) | |
def fast_rcnn_inference_single_image( | |
boxes, | |
scores, | |
image_shape: Tuple[int, int], | |
score_thresh: float, | |
nms_thresh: float, | |
topk_per_image: int, | |
): | |
""" | |
Single-image inference. Return bounding-box detection results by thresholding | |
on scores and applying non-maximum suppression (NMS). | |
Args: | |
Same as `fast_rcnn_inference`, but with boxes, scores, and image shapes | |
per image. | |
Returns: | |
Same as `fast_rcnn_inference`, but for only one image. | |
""" | |
valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) | |
if not valid_mask.all(): | |
boxes = boxes[valid_mask] | |
scores = scores[valid_mask] | |
scores = scores[:, :-1] | |
num_bbox_reg_classes = boxes.shape[1] // 4 | |
# Convert to Boxes to use the `clip` function ... | |
boxes = Boxes(boxes.reshape(-1, 4)) | |
boxes.clip(image_shape) | |
boxes = boxes.tensor.view(-1, num_bbox_reg_classes, 4) # R x C x 4 | |
# 1. Filter results based on detection scores. It can make NMS more efficient | |
# by filtering out low-confidence detections. | |
filter_mask = scores > score_thresh # R x K | |
# R' x 2. First column contains indices of the R predictions; | |
# Second column contains indices of classes. | |
filter_inds = filter_mask.nonzero() | |
if num_bbox_reg_classes == 1: | |
boxes = boxes[filter_inds[:, 0], 0] | |
else: | |
boxes = boxes[filter_mask] | |
scores = scores[filter_mask] | |
# 2. Apply NMS for each class independently. | |
keep = batched_nms(boxes, scores, filter_inds[:, 1], nms_thresh) | |
if topk_per_image >= 0: | |
keep = keep[:topk_per_image] | |
boxes, scores, filter_inds = boxes[keep], scores[keep], filter_inds[keep] | |
result = Instances(image_shape) | |
result.pred_boxes = Boxes(boxes) | |
result.scores = scores | |
result.pred_classes = filter_inds[:, 1] | |
return result, filter_inds[:, 0] | |
class FastRCNNOutputLayers(nn.Module): | |
""" | |
Two linear layers for predicting Fast R-CNN outputs: | |
1. proposal-to-detection box regression deltas | |
2. classification scores | |
""" | |
def __init__( | |
self, | |
input_shape: ShapeSpec, | |
*, | |
box2box_transform, | |
num_classes: int, | |
test_score_thresh: float = 0.0, | |
test_nms_thresh: float = 0.5, | |
test_topk_per_image: int = 100, | |
cls_agnostic_bbox_reg: bool = False, | |
smooth_l1_beta: float = 0.0, | |
box_reg_loss_type: str = "smooth_l1", | |
loss_weight: Union[float, Dict[str, float]] = 1.0, | |
use_fed_loss: bool = False, | |
use_sigmoid_ce: bool = False, | |
get_fed_loss_cls_weights: Optional[Callable] = None, | |
fed_loss_num_classes: int = 50, | |
): | |
""" | |
NOTE: this interface is experimental. | |
Args: | |
input_shape (ShapeSpec): shape of the input feature to this module | |
box2box_transform (Box2BoxTransform or Box2BoxTransformRotated): | |
num_classes (int): number of foreground classes | |
test_score_thresh (float): threshold to filter predictions results. | |
test_nms_thresh (float): NMS threshold for prediction results. | |
test_topk_per_image (int): number of top predictions to produce per image. | |
cls_agnostic_bbox_reg (bool): whether to use class agnostic for bbox regression | |
smooth_l1_beta (float): transition point from L1 to L2 loss. Only used if | |
`box_reg_loss_type` is "smooth_l1" | |
box_reg_loss_type (str): Box regression loss type. One of: "smooth_l1", "giou", | |
"diou", "ciou" | |
loss_weight (float|dict): weights to use for losses. Can be single float for weighting | |
all losses, or a dict of individual weightings. Valid dict keys are: | |
* "loss_cls": applied to classification loss | |
* "loss_box_reg": applied to box regression loss | |
use_fed_loss (bool): whether to use federated loss which samples additional negative | |
classes to calculate the loss | |
use_sigmoid_ce (bool): whether to calculate the loss using weighted average of binary | |
cross entropy with logits. This could be used together with federated loss | |
get_fed_loss_cls_weights (Callable): a callable which takes dataset name and frequency | |
weight power, and returns the probabilities to sample negative classes for | |
federated loss. The implementation can be found in | |
detectron2/data/detection_utils.py | |
fed_loss_num_classes (int): number of federated classes to keep in total | |
""" | |
super().__init__() | |
if isinstance(input_shape, int): # some backward compatibility | |
input_shape = ShapeSpec(channels=input_shape) | |
self.num_classes = num_classes | |
input_size = input_shape.channels * (input_shape.width or 1) * (input_shape.height or 1) | |
# prediction layer for num_classes foreground classes and one background class (hence + 1) | |
self.cls_score = nn.Linear(input_size, num_classes + 1) | |
num_bbox_reg_classes = 1 if cls_agnostic_bbox_reg else num_classes | |
box_dim = len(box2box_transform.weights) | |
self.bbox_pred = nn.Linear(input_size, num_bbox_reg_classes * box_dim) | |
nn.init.normal_(self.cls_score.weight, std=0.01) | |
nn.init.normal_(self.bbox_pred.weight, std=0.001) | |
for l in [self.cls_score, self.bbox_pred]: | |
nn.init.constant_(l.bias, 0) | |
self.box2box_transform = box2box_transform | |
self.smooth_l1_beta = smooth_l1_beta | |
self.test_score_thresh = test_score_thresh | |
self.test_nms_thresh = test_nms_thresh | |
self.test_topk_per_image = test_topk_per_image | |
self.box_reg_loss_type = box_reg_loss_type | |
if isinstance(loss_weight, float): | |
loss_weight = {"loss_cls": loss_weight, "loss_box_reg": loss_weight} | |
self.loss_weight = loss_weight | |
self.use_fed_loss = use_fed_loss | |
self.use_sigmoid_ce = use_sigmoid_ce | |
self.fed_loss_num_classes = fed_loss_num_classes | |
if self.use_fed_loss: | |
assert self.use_sigmoid_ce, "Please use sigmoid cross entropy loss with federated loss" | |
fed_loss_cls_weights = get_fed_loss_cls_weights() | |
assert ( | |
len(fed_loss_cls_weights) == self.num_classes | |
), "Please check the provided fed_loss_cls_weights. Their size should match num_classes" | |
self.register_buffer("fed_loss_cls_weights", fed_loss_cls_weights) | |
def from_config(cls, cfg, input_shape): | |
return { | |
"input_shape": input_shape, | |
"box2box_transform": Box2BoxTransform(weights=cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_WEIGHTS), | |
# fmt: off | |
"num_classes" : cfg.MODEL.ROI_HEADS.NUM_CLASSES, | |
"cls_agnostic_bbox_reg" : cfg.MODEL.ROI_BOX_HEAD.CLS_AGNOSTIC_BBOX_REG, | |
"smooth_l1_beta" : cfg.MODEL.ROI_BOX_HEAD.SMOOTH_L1_BETA, | |
"test_score_thresh" : cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST, | |
"test_nms_thresh" : cfg.MODEL.ROI_HEADS.NMS_THRESH_TEST, | |
"test_topk_per_image" : cfg.TEST.DETECTIONS_PER_IMAGE, | |
"box_reg_loss_type" : cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_LOSS_TYPE, | |
"loss_weight" : {"loss_box_reg": cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_LOSS_WEIGHT}, # noqa | |
"use_fed_loss" : cfg.MODEL.ROI_BOX_HEAD.USE_FED_LOSS, | |
"use_sigmoid_ce" : cfg.MODEL.ROI_BOX_HEAD.USE_SIGMOID_CE, | |
"get_fed_loss_cls_weights" : lambda: get_fed_loss_cls_weights(dataset_names=cfg.DATASETS.TRAIN, freq_weight_power=cfg.MODEL.ROI_BOX_HEAD.FED_LOSS_FREQ_WEIGHT_POWER), # noqa | |
"fed_loss_num_classes" : cfg.MODEL.ROI_BOX_HEAD.FED_LOSS_NUM_CLASSES, | |
# fmt: on | |
} | |
def forward(self, x): | |
""" | |
Args: | |
x: per-region features of shape (N, ...) for N bounding boxes to predict. | |
Returns: | |
(Tensor, Tensor): | |
First tensor: shape (N,K+1), scores for each of the N box. Each row contains the | |
scores for K object categories and 1 background class. | |
Second tensor: bounding box regression deltas for each box. Shape is shape (N,Kx4), | |
or (N,4) for class-agnostic regression. | |
""" | |
if x.dim() > 2: | |
x = torch.flatten(x, start_dim=1) | |
scores = self.cls_score(x) | |
proposal_deltas = self.bbox_pred(x) | |
return scores, proposal_deltas | |
def losses(self, predictions, proposals): | |
""" | |
Args: | |
predictions: return values of :meth:`forward()`. | |
proposals (list[Instances]): proposals that match the features that were used | |
to compute predictions. The fields ``proposal_boxes``, ``gt_boxes``, | |
``gt_classes`` are expected. | |
Returns: | |
Dict[str, Tensor]: dict of losses | |
""" | |
scores, proposal_deltas = predictions | |
# parse classification outputs | |
gt_classes = ( | |
cat([p.gt_classes for p in proposals], dim=0) if len(proposals) else torch.empty(0) | |
) | |
_log_classification_stats(scores, gt_classes) | |
# parse box regression outputs | |
if len(proposals): | |
proposal_boxes = cat([p.proposal_boxes.tensor for p in proposals], dim=0) # Nx4 | |
assert not proposal_boxes.requires_grad, "Proposals should not require gradients!" | |
# If "gt_boxes" does not exist, the proposals must be all negative and | |
# should not be included in regression loss computation. | |
# Here we just use proposal_boxes as an arbitrary placeholder because its | |
# value won't be used in self.box_reg_loss(). | |
gt_boxes = cat( | |
[(p.gt_boxes if p.has("gt_boxes") else p.proposal_boxes).tensor for p in proposals], | |
dim=0, | |
) | |
else: | |
proposal_boxes = gt_boxes = torch.empty((0, 4), device=proposal_deltas.device) | |
if self.use_sigmoid_ce: | |
loss_cls = self.sigmoid_cross_entropy_loss(scores, gt_classes) | |
else: | |
loss_cls = cross_entropy(scores, gt_classes, reduction="mean") | |
losses = { | |
"loss_cls": loss_cls, | |
"loss_box_reg": self.box_reg_loss( | |
proposal_boxes, gt_boxes, proposal_deltas, gt_classes | |
), | |
} | |
return {k: v * self.loss_weight.get(k, 1.0) for k, v in losses.items()} | |
# Implementation from https://github.com/xingyizhou/CenterNet2/blob/master/projects/CenterNet2/centernet/modeling/roi_heads/fed_loss.py # noqa | |
# with slight modifications | |
def get_fed_loss_classes(self, gt_classes, num_fed_loss_classes, num_classes, weight): | |
""" | |
Args: | |
gt_classes: a long tensor of shape R that contains the gt class label of each proposal. | |
num_fed_loss_classes: minimum number of classes to keep when calculating federated loss. | |
Will sample negative classes if number of unique gt_classes is smaller than this value. | |
num_classes: number of foreground classes | |
weight: probabilities used to sample negative classes | |
Returns: | |
Tensor: | |
classes to keep when calculating the federated loss, including both unique gt | |
classes and sampled negative classes. | |
""" | |
unique_gt_classes = torch.unique(gt_classes) | |
prob = unique_gt_classes.new_ones(num_classes + 1).float() | |
prob[-1] = 0 | |
if len(unique_gt_classes) < num_fed_loss_classes: | |
prob[:num_classes] = weight.float().clone() | |
prob[unique_gt_classes] = 0 | |
sampled_negative_classes = torch.multinomial( | |
prob, num_fed_loss_classes - len(unique_gt_classes), replacement=False | |
) | |
fed_loss_classes = torch.cat([unique_gt_classes, sampled_negative_classes]) | |
else: | |
fed_loss_classes = unique_gt_classes | |
return fed_loss_classes | |
# Implementation from https://github.com/xingyizhou/CenterNet2/blob/master/projects/CenterNet2/centernet/modeling/roi_heads/custom_fast_rcnn.py#L113 # noqa | |
# with slight modifications | |
def sigmoid_cross_entropy_loss(self, pred_class_logits, gt_classes): | |
""" | |
Args: | |
pred_class_logits: shape (N, K+1), scores for each of the N box. Each row contains the | |
scores for K object categories and 1 background class | |
gt_classes: a long tensor of shape R that contains the gt class label of each proposal. | |
""" | |
if pred_class_logits.numel() == 0: | |
return pred_class_logits.new_zeros([1])[0] | |
N = pred_class_logits.shape[0] | |
K = pred_class_logits.shape[1] - 1 | |
target = pred_class_logits.new_zeros(N, K + 1) | |
target[range(len(gt_classes)), gt_classes] = 1 | |
target = target[:, :K] | |
cls_loss = F.binary_cross_entropy_with_logits( | |
pred_class_logits[:, :-1], target, reduction="none" | |
) | |
if self.use_fed_loss: | |
fed_loss_classes = self.get_fed_loss_classes( | |
gt_classes, | |
num_fed_loss_classes=self.fed_loss_num_classes, | |
num_classes=K, | |
weight=self.fed_loss_cls_weights, | |
) | |
fed_loss_classes_mask = fed_loss_classes.new_zeros(K + 1) | |
fed_loss_classes_mask[fed_loss_classes] = 1 | |
fed_loss_classes_mask = fed_loss_classes_mask[:K] | |
weight = fed_loss_classes_mask.view(1, K).expand(N, K).float() | |
else: | |
weight = 1 | |
loss = torch.sum(cls_loss * weight) / N | |
return loss | |
def box_reg_loss(self, proposal_boxes, gt_boxes, pred_deltas, gt_classes): | |
""" | |
Args: | |
proposal_boxes/gt_boxes are tensors with the same shape (R, 4 or 5). | |
pred_deltas has shape (R, 4 or 5), or (R, num_classes * (4 or 5)). | |
gt_classes is a long tensor of shape R, the gt class label of each proposal. | |
R shall be the number of proposals. | |
""" | |
box_dim = proposal_boxes.shape[1] # 4 or 5 | |
# Regression loss is only computed for foreground proposals (those matched to a GT) | |
fg_inds = nonzero_tuple((gt_classes >= 0) & (gt_classes < self.num_classes))[0] | |
if pred_deltas.shape[1] == box_dim: # cls-agnostic regression | |
fg_pred_deltas = pred_deltas[fg_inds] | |
else: | |
fg_pred_deltas = pred_deltas.view(-1, self.num_classes, box_dim)[ | |
fg_inds, gt_classes[fg_inds] | |
] | |
loss_box_reg = _dense_box_regression_loss( | |
[proposal_boxes[fg_inds]], | |
self.box2box_transform, | |
[fg_pred_deltas.unsqueeze(0)], | |
[gt_boxes[fg_inds]], | |
..., | |
self.box_reg_loss_type, | |
self.smooth_l1_beta, | |
) | |
# The reg loss is normalized using the total number of regions (R), not the number | |
# of foreground regions even though the box regression loss is only defined on | |
# foreground regions. Why? Because doing so gives equal training influence to | |
# each foreground example. To see how, consider two different minibatches: | |
# (1) Contains a single foreground region | |
# (2) Contains 100 foreground regions | |
# If we normalize by the number of foreground regions, the single example in | |
# minibatch (1) will be given 100 times as much influence as each foreground | |
# example in minibatch (2). Normalizing by the total number of regions, R, | |
# means that the single example in minibatch (1) and each of the 100 examples | |
# in minibatch (2) are given equal influence. | |
return loss_box_reg / max(gt_classes.numel(), 1.0) # return 0 if empty | |
def inference(self, predictions: Tuple[torch.Tensor, torch.Tensor], proposals: List[Instances]): | |
""" | |
Args: | |
predictions: return values of :meth:`forward()`. | |
proposals (list[Instances]): proposals that match the features that were | |
used to compute predictions. The ``proposal_boxes`` field is expected. | |
Returns: | |
list[Instances]: same as `fast_rcnn_inference`. | |
list[Tensor]: same as `fast_rcnn_inference`. | |
""" | |
boxes = self.predict_boxes(predictions, proposals) | |
scores = self.predict_probs(predictions, proposals) | |
image_shapes = [x.image_size for x in proposals] | |
return fast_rcnn_inference( | |
boxes, | |
scores, | |
image_shapes, | |
self.test_score_thresh, | |
self.test_nms_thresh, | |
self.test_topk_per_image, | |
) | |
def predict_boxes_for_gt_classes(self, predictions, proposals): | |
""" | |
Args: | |
predictions: return values of :meth:`forward()`. | |
proposals (list[Instances]): proposals that match the features that were used | |
to compute predictions. The fields ``proposal_boxes``, ``gt_classes`` are expected. | |
Returns: | |
list[Tensor]: | |
A list of Tensors of predicted boxes for GT classes in case of | |
class-specific box head. Element i of the list has shape (Ri, B), where Ri is | |
the number of proposals for image i and B is the box dimension (4 or 5) | |
""" | |
if not len(proposals): | |
return [] | |
scores, proposal_deltas = predictions | |
proposal_boxes = cat([p.proposal_boxes.tensor for p in proposals], dim=0) | |
N, B = proposal_boxes.shape | |
predict_boxes = self.box2box_transform.apply_deltas( | |
proposal_deltas, proposal_boxes | |
) # Nx(KxB) | |
K = predict_boxes.shape[1] // B | |
if K > 1: | |
gt_classes = torch.cat([p.gt_classes for p in proposals], dim=0) | |
# Some proposals are ignored or have a background class. Their gt_classes | |
# cannot be used as index. | |
gt_classes = gt_classes.clamp_(0, K - 1) | |
predict_boxes = predict_boxes.view(N, K, B)[ | |
torch.arange(N, dtype=torch.long, device=predict_boxes.device), gt_classes | |
] | |
num_prop_per_image = [len(p) for p in proposals] | |
return predict_boxes.split(num_prop_per_image) | |
def predict_boxes( | |
self, predictions: Tuple[torch.Tensor, torch.Tensor], proposals: List[Instances] | |
): | |
""" | |
Args: | |
predictions: return values of :meth:`forward()`. | |
proposals (list[Instances]): proposals that match the features that were | |
used to compute predictions. The ``proposal_boxes`` field is expected. | |
Returns: | |
list[Tensor]: | |
A list of Tensors of predicted class-specific or class-agnostic boxes | |
for each image. Element i has shape (Ri, K * B) or (Ri, B), where Ri is | |
the number of proposals for image i and B is the box dimension (4 or 5) | |
""" | |
if not len(proposals): | |
return [] | |
_, proposal_deltas = predictions | |
num_prop_per_image = [len(p) for p in proposals] | |
proposal_boxes = cat([p.proposal_boxes.tensor for p in proposals], dim=0) | |
predict_boxes = self.box2box_transform.apply_deltas( | |
proposal_deltas, | |
proposal_boxes, | |
) # Nx(KxB) | |
return predict_boxes.split(num_prop_per_image) | |
def predict_probs( | |
self, predictions: Tuple[torch.Tensor, torch.Tensor], proposals: List[Instances] | |
): | |
""" | |
Args: | |
predictions: return values of :meth:`forward()`. | |
proposals (list[Instances]): proposals that match the features that were | |
used to compute predictions. | |
Returns: | |
list[Tensor]: | |
A list of Tensors of predicted class probabilities for each image. | |
Element i has shape (Ri, K + 1), where Ri is the number of proposals for image i. | |
""" | |
scores, _ = predictions | |
num_inst_per_image = [len(p) for p in proposals] | |
if self.use_sigmoid_ce: | |
probs = scores.sigmoid() | |
else: | |
probs = F.softmax(scores, dim=-1) | |
return probs.split(num_inst_per_image, dim=0) | |