LPX55's picture
Update alt_gen.py
01ec3b5 verified
# WIP: Optimizations are coming!
from typing import List, Optional, Tuple, Union
import cv2
import numpy as np
import safetensors.torch
import torch
import torchvision.transforms.v2 as transforms
from diffusers import FlowMatchEulerDiscreteScheduler, HunyuanVideoPipeline
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
from diffusers.loaders import HunyuanVideoLoraLoaderMixin
from diffusers.models import AutoencoderKLHunyuanVideo, HunyuanVideoTransformer3DModel
from diffusers.models.attention import Attention
from diffusers.models.embeddings import apply_rotary_emb
from diffusers.models.transformers.transformer_hunyuan_video import HunyuanVideoPatchEmbed, HunyuanVideoTransformer3DModel
from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import DEFAULT_PROMPT_TEMPLATE, retrieve_timesteps
from diffusers.pipelines.hunyuan_video.pipeline_output import HunyuanVideoPipelineOutput
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
from diffusers.utils import export_to_video, is_torch_xla_available, load_image, logging, replace_example_docstring
from diffusers.utils.state_dict_utils import convert_state_dict_to_diffusers, convert_unet_state_dict_to_peft
from diffusers.utils.torch_utils import randn_tensor
from diffusers.video_processor import VideoProcessor
from peft import LoraConfig, get_peft_model_state_dict, set_peft_model_state_dict
from PIL import Image
from typing import Dict, List
from typing import Any
from typing import Callable
import argparse
import os
import time
import random
import sys
# 20250305 pftq load settings for customization ####
parser = argparse.ArgumentParser()
parser.add_argument("--base_model_id", type=str, default="hunyuanvideo-community/HunyuanVideo")
parser.add_argument("--transformer_model_id", type=str, default="hunyuanvideo-community/HunyuanVideo")
parser.add_argument("--lora_path", type=str, default="i2v.sft")
parser.add_argument("--use_sage", action="store_true")
parser.add_argument("--use_flash", action="store_true")
parser.add_argument("--cfg", type=float, default=6.0)
parser.add_argument("--num_frames", type=int, default=77)
parser.add_argument("--steps", type=int, default=50)
parser.add_argument("--seed", type=int, default=-1)
parser.add_argument("--prompt", type=str, default="a woman")
parser.add_argument("--height", type=int, default=1280)
parser.add_argument("--width", type=int, default=720)
parser.add_argument("--video_num", type=int, default=1)
parser.add_argument("--image1", type=str, default="https://content.dashtoon.ai/stability-images/e524013d-55d4-483a-b80a-dfc51d639158.png")
parser.add_argument("--image2", type=str, default="https://content.dashtoon.ai/stability-images/0b29c296-0a90-4b92-96b9-1ed0ae21e480.png")
parser.add_argument("--image3", type=str, default="")
parser.add_argument("--image4", type=str, default="")
parser.add_argument("--image5", type=str, default="")
parser.add_argument("--fps", type=int, default=24)
parser.add_argument("--mbps", type=float, default=7)
parser.add_argument("--color_match", action="store_true")
args = parser.parse_args()
# 20250305 pftq: from main repo at https://github.com/dashtoon/hunyuan-video-keyframe-control-lora/blob/main/hv_control_lora_inference.py
use_sage = False
use_flash = False
if args.use_sage:
try:
from sageattention import sageattn, sageattn_varlen
use_sage = True
except ImportError:
sageattn, sageattn_varlen = None, None
elif args.use_flash:
try:
import flash_attn
from flash_attn.flash_attn_interface import _flash_attn_forward, flash_attn_varlen_func
use_flash = True
except ImportError:
flash_attn, _flash_attn_forward, flash_attn_varlen_func = None, None, None
print("Using SageAtten: "+str(use_sage))
print("Using FlashAttn: "+str(use_flash))
video_transforms = transforms.Compose(
[
transforms.Lambda(lambda x: x / 255.0),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
]
)
def resize_image_to_bucket(image: Union[Image.Image, np.ndarray], bucket_reso: tuple[int, int]) -> np.ndarray:
"""
Resize the image to the bucket resolution.
"""
is_pil_image = isinstance(image, Image.Image)
if is_pil_image:
image_width, image_height = image.size
else:
image_height, image_width = image.shape[:2]
if bucket_reso == (image_width, image_height):
return np.array(image) if is_pil_image else image
bucket_width, bucket_height = bucket_reso
scale_width = bucket_width / image_width
scale_height = bucket_height / image_height
scale = max(scale_width, scale_height)
image_width = int(image_width * scale + 0.5)
image_height = int(image_height * scale + 0.5)
if scale > 1:
image = Image.fromarray(image) if not is_pil_image else image
image = image.resize((image_width, image_height), Image.LANCZOS)
image = np.array(image)
else:
image = np.array(image) if is_pil_image else image
image = cv2.resize(image, (image_width, image_height), interpolation=cv2.INTER_AREA)
# crop the image to the bucket resolution
crop_left = (image_width - bucket_width) // 2
crop_top = (image_height - bucket_height) // 2
image = image[crop_top : crop_top + bucket_height, crop_left : crop_left + bucket_width]
return image
# 20250305 pftq: from main repo at https://github.com/dashtoon/hunyuan-video-keyframe-control-lora/blob/main/hv_control_lora_inference.py
def get_cu_seqlens(attention_mask):
"""Calculate cu_seqlens_q, cu_seqlens_kv using attention_mask"""
batch_size = attention_mask.shape[0]
text_len = attention_mask.sum(dim=-1, dtype=torch.int)
max_len = attention_mask.shape[-1]
cu_seqlens = torch.zeros([2 * batch_size + 1], dtype=torch.int32, device="cuda")
for i in range(batch_size):
s = text_len[i]
s1 = i * max_len + s
s2 = (i + 1) * max_len
cu_seqlens[2 * i + 1] = s1
cu_seqlens[2 * i + 2] = s2
return cu_seqlens
class HunyuanVideoFlashAttnProcessor:
def __init__(self, use_flash_attn=True, use_sageattn=False):
self.use_flash_attn = use_flash_attn
self.use_sageattn = use_sageattn
if self.use_flash_attn:
assert flash_attn is not None, "Flash attention not available"
if self.use_sageattn:
assert sageattn is not None, "Sage attention not available"
def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, image_rotary_emb=None):
if attn.add_q_proj is None and encoder_hidden_states is not None:
hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
query = query.unflatten(2, (attn.heads, -1)).transpose(1, 2)
key = key.unflatten(2, (attn.heads, -1)).transpose(1, 2)
value = value.unflatten(2, (attn.heads, -1)).transpose(1, 2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
if image_rotary_emb is not None:
if attn.add_q_proj is None and encoder_hidden_states is not None:
query = torch.cat(
[
apply_rotary_emb(query[:, :, : -encoder_hidden_states.shape[1]], image_rotary_emb),
query[:, :, -encoder_hidden_states.shape[1] :],
],
dim=2,
)
key = torch.cat(
[
apply_rotary_emb(key[:, :, : -encoder_hidden_states.shape[1]], image_rotary_emb),
key[:, :, -encoder_hidden_states.shape[1] :],
],
dim=2,
)
else:
query = apply_rotary_emb(query, image_rotary_emb)
key = apply_rotary_emb(key, image_rotary_emb)
batch_size = hidden_states.shape[0]
img_seq_len = hidden_states.shape[1]
txt_seq_len = 0
if attn.add_q_proj is not None and encoder_hidden_states is not None:
encoder_query = attn.add_q_proj(encoder_hidden_states)
encoder_key = attn.add_k_proj(encoder_hidden_states)
encoder_value = attn.add_v_proj(encoder_hidden_states)
encoder_query = encoder_query.unflatten(2, (attn.heads, -1)).transpose(1, 2)
encoder_key = encoder_key.unflatten(2, (attn.heads, -1)).transpose(1, 2)
encoder_value = encoder_value.unflatten(2, (attn.heads, -1)).transpose(1, 2)
if attn.norm_added_q is not None:
encoder_query = attn.norm_added_q(encoder_query)
if attn.norm_added_k is not None:
encoder_key = attn.norm_added_k(encoder_key)
query = torch.cat([query, encoder_query], dim=2)
key = torch.cat([key, encoder_key], dim=2)
value = torch.cat([value, encoder_value], dim=2)
txt_seq_len = encoder_hidden_states.shape[1]
max_seqlen_q = max_seqlen_kv = img_seq_len + txt_seq_len
cu_seqlens_q = cu_seqlens_kv = get_cu_seqlens(attention_mask)
query = query.transpose(1, 2).reshape(-1, query.shape[1], query.shape[3])
key = key.transpose(1, 2).reshape(-1, key.shape[1], key.shape[3])
value = value.transpose(1, 2).reshape(-1, value.shape[1], value.shape[3])
if self.use_flash_attn:
hidden_states = flash_attn_varlen_func(
query, key, value, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv
)
elif self.use_sageattn:
hidden_states = sageattn_varlen(query, key, value, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
else:
raise NotImplementedError("Please set use_flash_attn=True or use_sageattn=True")
hidden_states = hidden_states.reshape(batch_size, max_seqlen_q, -1)
hidden_states = hidden_states.to(query.dtype)
if encoder_hidden_states is not None:
hidden_states, encoder_hidden_states = (
hidden_states[:, : -encoder_hidden_states.shape[1]],
hidden_states[:, -encoder_hidden_states.shape[1] :],
)
if getattr(attn, "to_out", None) is not None:
hidden_states = attn.to_out[0](hidden_states)
hidden_states = attn.to_out[1](hidden_states)
if getattr(attn, "to_add_out", None) is not None:
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
return hidden_states, encoder_hidden_states
@torch.inference_mode()
def call_pipe(
pipe,
prompt: Union[str, List[str]] = None,
prompt_2: Union[str, List[str]] = None,
height: int = 720,
width: int = 1280,
num_frames: int = 129,
num_inference_steps: int = 50,
sigmas: List[float] = None,
guidance_scale: float = 6.0,
num_videos_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
pooled_prompt_embeds: Optional[torch.Tensor] = None,
prompt_attention_mask: Optional[torch.Tensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
attention_kwargs: Optional[Dict[str, Any]] = None,
callback_on_step_end: Optional[Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
prompt_template: Dict[str, Any] = DEFAULT_PROMPT_TEMPLATE,
max_sequence_length: int = 256,
image_latents: Optional[torch.Tensor] = None,
):
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
# 1. Check inputs. Raise error if not correct
pipe.check_inputs(
prompt,
prompt_2,
height,
width,
prompt_embeds,
callback_on_step_end_tensor_inputs,
prompt_template,
)
pipe._guidance_scale = guidance_scale
pipe._attention_kwargs = attention_kwargs
pipe._current_timestep = None
pipe._interrupt = False
device = pipe._execution_device
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
# 3. Encode input prompt
prompt_embeds, pooled_prompt_embeds, prompt_attention_mask = pipe.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
prompt_template=prompt_template,
num_videos_per_prompt=num_videos_per_prompt,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
prompt_attention_mask=prompt_attention_mask,
device=device,
max_sequence_length=max_sequence_length,
)
transformer_dtype = pipe.transformer.dtype
prompt_embeds = prompt_embeds.to(transformer_dtype)
prompt_attention_mask = prompt_attention_mask.to(transformer_dtype)
if pooled_prompt_embeds is not None:
pooled_prompt_embeds = pooled_prompt_embeds.to(transformer_dtype)
# 4. Prepare timesteps
sigmas = np.linspace(1.0, 0.0, num_inference_steps + 1)[:-1] if sigmas is None else sigmas
timesteps, num_inference_steps = retrieve_timesteps(
pipe.scheduler,
num_inference_steps,
device,
sigmas=sigmas,
)
# 5. Prepare latent variables
num_channels_latents = pipe.transformer.config.in_channels
num_latent_frames = (num_frames - 1) // pipe.vae_scale_factor_temporal + 1
latents = pipe.prepare_latents(
batch_size * num_videos_per_prompt,
num_channels_latents,
height,
width,
num_latent_frames,
torch.float32,
device,
generator,
latents,
)
# 6. Prepare guidance condition
guidance = torch.tensor([guidance_scale] * latents.shape[0], dtype=transformer_dtype, device=device) * 1000.0
# 7. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * pipe.scheduler.order
pipe._num_timesteps = len(timesteps)
# 20250305 pftq: added to properly offload to CPU, was out of memory otherwise
pipe.text_encoder.to("cpu")
pipe.text_encoder_2.to("cpu")
torch.cuda.empty_cache()
with pipe.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if pipe.interrupt:
continue
pipe._current_timestep = t
latent_model_input = latents.to(transformer_dtype)
timestep = t.expand(latents.shape[0]).to(latents.dtype)
noise_pred = pipe.transformer(
hidden_states=torch.cat([latent_model_input, image_latents], dim=1),
timestep=timestep,
encoder_hidden_states=prompt_embeds,
encoder_attention_mask=prompt_attention_mask,
pooled_projections=pooled_prompt_embeds,
guidance=guidance,
attention_kwargs=attention_kwargs,
return_dict=False,
)[0]
# compute the previous noisy sample x_t -> x_t-1
latents = pipe.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(pipe, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % pipe.scheduler.order == 0):
progress_bar.update()
pipe._current_timestep = None
if not output_type == "latent":
latents = latents.to(pipe.vae.dtype) / pipe.vae.config.scaling_factor
video = pipe.vae.decode(latents, return_dict=False)[0]
video = pipe.video_processor.postprocess_video(video, output_type=output_type)
else:
video = latents
# Offload all models
pipe.maybe_free_model_hooks()
if not return_dict:
return (video,)
return HunyuanVideoPipelineOutput(frames=video)
#20250305 pftq: customizable bitrate
# Function to check if FFmpeg is installed
import subprocess # For FFmpeg functionality
def is_ffmpeg_installed():
try:
subprocess.run(["ffmpeg", "-version"], stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True)
return True
except (subprocess.CalledProcessError, FileNotFoundError):
return False
# FFmpeg-based video saving with bitrate control
def save_video_with_ffmpeg(frames, output_path, fps, bitrate_mbps, metadata_comment=None):
frames = [np.array(frame) for frame in frames]
height, width, _ = frames[0].shape
bitrate = f"{bitrate_mbps}M"
cmd = [
"ffmpeg",
"-y",
"-f", "rawvideo",
"-vcodec", "rawvideo",
"-s", f"{width}x{height}",
"-pix_fmt", "rgb24",
"-r", str(fps),
"-i", "-",
"-c:v", "libx264",
"-b:v", bitrate,
"-pix_fmt", "yuv420p",
"-preset", "medium",
]
# Add metadata comment if provided
if metadata_comment:
cmd.extend(["-metadata", f"comment={metadata_comment}"])
cmd.append(output_path)
process = subprocess.Popen(cmd, stdin=subprocess.PIPE, stderr=subprocess.PIPE)
for frame in frames:
process.stdin.write(frame.tobytes())
process.stdin.close()
process.wait()
stderr_output = process.stderr.read().decode()
if process.returncode != 0:
print(f"FFmpeg error: {stderr_output}")
else:
print(f"Video saved to {output_path} with FFmpeg")
# Fallback OpenCV-based video saving
def save_video_with_opencv(frames, output_path, fps, bitrate_mbps):
frames = [np.array(frame) for frame in frames]
height, width, _ = frames[0].shape
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
writer = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
# Note: cv2.CAP_PROP_BITRATE is not supported, so bitrate_mbps is ignored
for frame in frames:
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) # Convert RGB to BGR for OpenCV
writer.write(frame)
writer.release()
print(f"Video saved to {output_path} with OpenCV (bitrate control unavailable)")
# Wrapper to choose between FFmpeg and OpenCV
def save_video_with_quality(frames, output_path, fps, bitrate_mbps, metadata_comment=None):
if is_ffmpeg_installed():
save_video_with_ffmpeg(frames, output_path, fps, bitrate_mbps, metadata_comment)
else:
print("FFmpeg not found. Falling back to OpenCV (bitrate not customizable).")
save_video_with_opencv(frames, output_path, fps, bitrate_mbps)
# Reconstruct command-line with quotes and backslash+linebreak after argument-value pairs
def reconstruct_command_line(args, argv):
cmd_parts = [argv[0]] # Start with script name
args_dict = vars(args) # Convert args to dict
i = 1
while i < len(argv):
arg = argv[i]
if arg.startswith("--"):
key = arg[2:]
if key in args_dict:
value = args_dict[key]
if isinstance(value, bool):
if value:
cmd_parts.append(arg) # Boolean flag
i += 1
else:
# Combine argument and value into one part
if i + 1 < len(argv) and not argv[i + 1].startswith("--"):
next_val = argv[i + 1]
if isinstance(value, str):
cmd_parts.append(f'{arg} "{value}"') # Quote strings
else:
cmd_parts.append(f"{arg} {value}") # No quotes for numbers
i += 2
else:
# Handle missing value in argv (use parsed args)
if isinstance(value, str):
cmd_parts.append(f'{arg} "{value}"')
else:
cmd_parts.append(f"{arg} {value}")
i += 1
else:
i += 1
# Build multi-line string with backslash and newline except for the last part
if len(cmd_parts) > 1:
result = ""
for j, part in enumerate(cmd_parts):
if j < len(cmd_parts) - 1:
result += part + " \\\n"
else:
result += part # No trailing backslash on last part
return result
return cmd_parts[0] # Single arg case
# start executing here ###################
print("Initializing model...")
transformer_subfolder = "transformer"
if args.transformer_model_id == "Skywork/SkyReels-V1-Hunyuan-I2V":
transformer_subfolder = "" # 20250305 pftq: Error otherwise - Skywork/SkyReels-V1-Hunyuan-I2V does not appear to have a file named config.json.
transformer = HunyuanVideoTransformer3DModel.from_pretrained(args.transformer_model_id, subfolder=transformer_subfolder, torch_dtype=torch.bfloat16)
pipe = HunyuanVideoPipeline.from_pretrained(args.base_model_id, transformer=transformer, torch_dtype=torch.bfloat16)
# Enable memory savings
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
pipe.enable_model_cpu_offload()
# Apply flash attention to all transformer blocks
if use_sage or use_flash:
for block in pipe.transformer.transformer_blocks + pipe.transformer.single_transformer_blocks:
block.attn.processor = HunyuanVideoFlashAttnProcessor(use_flash_attn=use_flash, use_sageattn=use_sage)
with torch.no_grad(): # enable image inputs
initial_input_channels = pipe.transformer.config.in_channels
new_img_in = HunyuanVideoPatchEmbed(
patch_size=(pipe.transformer.config.patch_size_t, pipe.transformer.config.patch_size, pipe.transformer.config.patch_size),
in_chans=pipe.transformer.config.in_channels * 2,
embed_dim=pipe.transformer.config.num_attention_heads * pipe.transformer.config.attention_head_dim,
)
new_img_in = new_img_in.to(pipe.device, dtype=pipe.dtype)
new_img_in.proj.weight.zero_()
new_img_in.proj.weight[:, :initial_input_channels].copy_(pipe.transformer.x_embedder.proj.weight)
if pipe.transformer.x_embedder.proj.bias is not None:
new_img_in.proj.bias.copy_(pipe.transformer.x_embedder.proj.bias)
pipe.transformer.x_embedder = new_img_in
print("Loading lora...")
lora_state_dict = pipe.lora_state_dict(args.lora_path)
transformer_lora_state_dict = {f'{k.replace("transformer.", "")}': v for k, v in lora_state_dict.items() if k.startswith("transformer.") and "lora" in k}
pipe.load_lora_into_transformer(transformer_lora_state_dict, transformer=pipe.transformer, adapter_name="i2v", _pipeline=pipe)
pipe.set_adapters(["i2v"], adapter_weights=[1.0])
pipe.fuse_lora(components=["transformer"], lora_scale=1.0, adapter_names=["i2v"])
pipe.unload_lora_weights()
print("Loading images...")
cond_frame1 = load_image(args.image1)
cond_frame2 = load_image(args.image2)
cond_frame1 = resize_image_to_bucket(cond_frame1, bucket_reso=(args.width, args.height))
cond_frame2 = resize_image_to_bucket(cond_frame2, bucket_reso=(args.width, args.height))
cond_video = np.zeros(shape=(args.num_frames, args.height, args.width, 3))
# 20250305 pftq: Optional 3rd-5th frame, sadly doesn't work so easily, needs more code
cond_frame3 = None
cond_frame4 = None
cond_frame5 = None
if args.image3 != "":
cond_frame3 = load_image(args.image3)
cond_frame3 = resize_image_to_bucket(cond_frame3, bucket_reso=(args.width, args.height))
if args.image4 !="":
cond_frame4 = load_image(args.image4)
cond_frame4 = resize_image_to_bucket(cond_frame4, bucket_reso=(args.width, args.height))
if args.image5 !="":
cond_frame5 = load_image(args.image5)
cond_frame5 = resize_image_to_bucket(cond_frame5, bucket_reso=(args.width, args.height))
if args.image5 != "" and args.image4 != "" and args.image3 !="" and args.image2 !="":
cond_video[0] = np.array(cond_frame1)
cond_video[args.num_frames//4] = np.array(cond_frame2)
cond_video[(args.num_frames * 2 )//4] = np.array(cond_frame3)
cond_video[(args.num_frames * 3 )//4] = np.array(cond_frame4)
cond_video[args.num_frames -1] = np.array(cond_frame5)
elif args.image4 != "" and args.image3 !="" and args.image2 !="":
cond_video[0] = np.array(cond_frame1)
cond_video[args.num_frames//3] = np.array(cond_frame2)
cond_video[(args.num_frames * 2 )//3] = np.array(cond_frame3)
cond_video[args.num_frames -1] = np.array(cond_frame4)
elif args.image3 != "" and args.image2 !="":
cond_video[0] = np.array(cond_frame1)
cond_video[args.num_frames//2] = np.array(cond_frame2)
cond_video[args.num_frames -1] = np.array(cond_frame3)
else:
cond_video[0] = np.array(cond_frame1)
cond_video[args.num_frames -1] = np.array(cond_frame2)
cond_video = torch.from_numpy(cond_video.copy()).permute(0, 3, 1, 2)
cond_video = torch.stack([video_transforms(x) for x in cond_video], dim=0).unsqueeze(0)
with torch.no_grad():
image_or_video = cond_video.to(device="cuda", dtype=pipe.dtype)
image_or_video = image_or_video.permute(0, 2, 1, 3, 4).contiguous() # [B, F, C, H, W] -> [B, C, F, H, W]
cond_latents = pipe.vae.encode(image_or_video).latent_dist.sample()
cond_latents = cond_latents * pipe.vae.config.scaling_factor
cond_latents = cond_latents.to(dtype=pipe.dtype)
for idx in range(args.video_num): # 20250305 pftq: for loop for multiple videos per batch with varying seeds
if args.seed == -1 or idx > 0: # 20250305 pftq: seed argument ignored if asking for more than one video
random.seed(time.time())
args.seed = int(random.randrange(4294967294))
#20250223 pftq: More useful filename and higher customizable bitrate
from datetime import datetime
now = datetime.now()
formatted_time = now.strftime('%Y-%m-%d_%H-%M-%S')
video_out_file = formatted_time+f"_hunyuankeyframe_{args.width}-{args.num_frames}f_cfg-{args.cfg}_steps-{args.steps}_seed-{args.seed}_{args.prompt[:40].replace('/','')}_{idx}"
command_line = reconstruct_command_line(args, sys.argv) # 20250307: Store the full command-line used in the mp4 comment with quotes
#print(f"Command-line received:\n{command_line}")
print("Starting video generation #"+str(idx)+" for "+video_out_file)
video = call_pipe(
pipe,
prompt=args.prompt,
num_frames=args.num_frames,
num_inference_steps=args.steps,
image_latents=cond_latents,
width=args.width,
height=args.height,
guidance_scale=args.cfg,
generator=torch.Generator(device="cuda").manual_seed(args.seed),
).frames[0]
# 20250305 pftq: Color match with direct MKL and temporal smoothing
if args.color_match:
#save_video_with_quality(video, f"{video_out_file}_raw.mp4", args.fps, args.mbps)
print("Applying color matching to video...")
from color_matcher import ColorMatcher
from color_matcher.io_handler import load_img_file
from color_matcher.normalizer import Normalizer
# Load the reference image (image1)
ref_img = load_img_file(args.image1) # Original load
cm = ColorMatcher()
matched_video = []
for frame in video:
frame_rgb = np.array(frame) # Direct PIL to numpy
matched_frame = cm.transfer(src=frame_rgb, ref=ref_img, method='mkl')
matched_frame = Normalizer(matched_frame).uint8_norm()
matched_video.append(matched_frame)
video = matched_video
# END OF COLOR MATCHING
print("Saving "+video_out_file)
#export_to_video(final_video, "output.mp4", fps=24)
save_video_with_quality(video, f"{video_out_file}.mp4", args.fps, args.mbps, command_line)