Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
import safetensors.torch | |
import torchvision.transforms.v2 as transforms | |
import cv2 | |
import torch | |
import numpy as np | |
from typing import List, Optional, Tuple, Union | |
from PIL import Image | |
import io | |
from io import BytesIO | |
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig | |
from diffusers import HunyuanVideoPipeline, FlowMatchEulerDiscreteScheduler | |
from diffusers.models.transformers.transformer_hunyuan_video import HunyuanVideoPatchEmbed, HunyuanVideoTransformer3DModel | |
from diffusers.utils import export_to_video | |
from diffusers.models.attention import Attention | |
from diffusers.utils.state_dict_utils import convert_state_dict_to_diffusers, convert_unet_state_dict_to_peft | |
from peft import LoraConfig, get_peft_model_state_dict, set_peft_model_state_dict | |
from diffusers.models.embeddings import apply_rotary_emb | |
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback | |
from diffusers.loaders import HunyuanVideoLoraLoaderMixin | |
from diffusers.models import AutoencoderKLHunyuanVideo, HunyuanVideoTransformer3DModel | |
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler | |
from diffusers.utils import is_torch_xla_available, logging, replace_example_docstring | |
from diffusers.utils.torch_utils import randn_tensor | |
from diffusers.video_processor import VideoProcessor | |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
from diffusers.pipelines.hunyuan_video.pipeline_output import HunyuanVideoPipelineOutput | |
from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import retrieve_timesteps, DEFAULT_PROMPT_TEMPLATE | |
from diffusers.utils import load_image | |
from huggingface_hub import hf_hub_download | |
import requests | |
import io | |
# Define video transformations | |
video_transforms = transforms.Compose( | |
[ | |
transforms.Lambda(lambda x: x / 255.0), | |
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True), | |
] | |
) | |
quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True) | |
transformer_8bit = HunyuanVideoTransformer3DModel.from_pretrained( | |
"hunyuanvideo-community/HunyuanVideo", | |
subfolder="transformer", | |
quantization_config=quant_config, | |
torch_dtype=torch.bfloat16, | |
) | |
pipeline = HunyuanVideoPipeline.from_pretrained( | |
"hunyuanvideo-community/HunyuanVideo", | |
transformer=transformer_8bit, | |
torch_dtype=torch.float16, | |
device_map="balanced", | |
) | |
model_id = "hunyuanvideo-community/HunyuanVideo" | |
lora_path = hf_hub_download("dashtoon/hunyuan-video-keyframe-control-lora", "i2v.sft") | |
# lora_path = "./cache/i2v.sft" | |
# Replace with the actual LORA path | |
transformer = HunyuanVideoTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.bfloat16) | |
global pipe | |
pipe = HunyuanVideoPipeline.from_pretrained(model_id, transformer=transformer, torch_dtype=torch.bfloat16) | |
# pipe.to("cuda") | |
# Enable memory savings | |
# pipe.vae.enable_slicing() | |
pipe.vae.enable_tiling() | |
pipe.enable_model_cpu_offload() | |
with torch.no_grad(): # enable image inputs | |
initial_input_channels = pipe.transformer.config.in_channels | |
new_img_in = HunyuanVideoPatchEmbed( | |
patch_size=(pipe.transformer.config.patch_size_t, pipe.transformer.config.patch_size, pipe.transformer.config.patch_size), | |
in_chans=pipe.transformer.config.in_channels * 2, | |
embed_dim=pipe.transformer.config.num_attention_heads * pipe.transformer.config.attention_head_dim, | |
) | |
new_img_in = new_img_in.to(pipe.device, dtype=pipe.dtype) | |
new_img_in.proj.weight.zero_() | |
new_img_in.proj.weight[:, :initial_input_channels].copy_(pipe.transformer.x_embedder.proj.weight) | |
if pipe.transformer.x_embedder.proj.bias is not None: | |
new_img_in.proj.bias.copy_(pipe.transformer.x_embedder.proj.bias) | |
pipe.transformer.x_embedder = new_img_in | |
lora_state_dict = safetensors.torch.load_file(lora_path, device="cpu") | |
transformer_lora_state_dict = {f'{k.replace("transformer.", "")}': v for k, v in lora_state_dict.items() if k.startswith("transformer.") and "lora" in k} | |
pipe.load_lora_into_transformer(transformer_lora_state_dict, transformer=pipe.transformer, adapter_name="i2v", _pipeline=pipe) | |
pipe.set_adapters(["i2v"], adapter_weights=[1.0]) | |
pipe.fuse_lora(components=["transformer"], lora_scale=1.0, adapter_names=["i2v"]) | |
pipe.unload_lora_weights() | |
# Function to read the content of a markdown file in the same directory | |
def read_markdown_file(file_path): | |
with open(file_path, 'r', encoding='utf-8') as file: | |
return file.read() | |
def resize_image_to_bucket(image: Union[Image.Image, np.ndarray], bucket_reso: Tuple[int, int]) -> np.ndarray: | |
""" | |
Resize the image to the bucket resolution. | |
""" | |
if isinstance(image, Image.Image): | |
image = np.array(image) | |
elif not isinstance(image, np.ndarray): | |
raise ValueError("Image must be a PIL Image or NumPy array") | |
image_height, image_width = image.shape[:2] | |
if bucket_reso == (image_width, image_height): | |
return image | |
bucket_width, bucket_height = bucket_reso | |
scale_width = bucket_width / image_width | |
scale_height = bucket_height / image_height | |
scale = max(scale_width, scale_height) | |
image_width = int(image_width * scale + 0.5) | |
image_height = int(image_height * scale + 0.5) | |
if scale > 1: | |
image = Image.fromarray(image) | |
image = image.resize((image_width, image_height), Image.LANCZOS) | |
image = np.array(image) | |
else: | |
image = cv2.resize(image, (image_width, image_height), interpolation=cv2.INTER_AREA) | |
# crop the image to the bucket resolution | |
crop_left = (image_width - bucket_width) // 2 | |
crop_top = (image_height - bucket_height) // 2 | |
image = image[crop_top:crop_top + bucket_height, crop_left:crop_left + bucket_width] | |
return image | |
# | |
# @torch.inference_mode() | |
def generate_video(prompt: str, frame1: Image.Image, frame2: Image.Image, resolution: str, guidance_scale: float, num_frames: int, num_inference_steps: int) -> bytes: | |
# Debugging print statements | |
print(f"Frame 1 Type: {type(frame1)}") | |
print(f"Frame 2 Type: {type(frame2)}") | |
print(f"Resolution: {resolution}") | |
# Parse resolution | |
width, height = map(int, resolution.split('x')) | |
# Load and preprocess frames | |
cond_frame1 = np.array(frame1) | |
cond_frame2 = np.array(frame2) | |
cond_frame1 = resize_image_to_bucket(cond_frame1, bucket_reso=(width, height)) | |
cond_frame2 = resize_image_to_bucket(cond_frame2, bucket_reso=(width, height)) | |
cond_video = np.zeros(shape=(num_frames, height, width, 3)) | |
cond_video[0], cond_video[-1] = cond_frame1, cond_frame2 | |
cond_video = torch.from_numpy(cond_video.copy()).permute(0, 3, 1, 2) | |
cond_video = torch.stack([video_transforms(x) for x in cond_video], dim=0).unsqueeze(0) | |
with torch.no_grad(): | |
image_or_video = cond_video.to(device="cuda", dtype=pipe.dtype) | |
image_or_video = image_or_video.permute(0, 2, 1, 3, 4).contiguous() # [B, F, C, H, W] -> [B, C, F, H, W] | |
cond_latents = pipe.vae.encode(image_or_video).latent_dist.sample() | |
cond_latents = cond_latents * pipe.vae.config.scaling_factor | |
cond_latents = cond_latents.to(dtype=pipe.dtype) | |
assert not torch.any(torch.isnan(cond_latents)) | |
# Generate video | |
video = call_pipe( | |
pipe, | |
prompt=prompt, | |
num_frames=num_frames, | |
num_inference_steps=num_inference_steps, | |
image_latents=cond_latents, | |
width=width, | |
height=height, | |
guidance_scale=guidance_scale, | |
generator=torch.Generator(device="cuda").manual_seed(0), | |
).frames[0] | |
# Export to video | |
# TO-DO: Implement alternate method | |
video_path = "output.mp4" | |
export_to_video(video, video_path, fps=24) | |
torch.cuda.empty_cache() | |
return video_path | |
def call_pipe( | |
pipe, | |
prompt: Union[str, List[str]] = None, | |
prompt_2: Union[str, List[str]] = None, | |
height: int = 720, | |
width: int = 1280, | |
num_frames: int = 129, | |
num_inference_steps: int = 50, | |
sigmas: Optional[List[float]] = None, | |
guidance_scale: float = 6.0, | |
num_videos_per_prompt: Optional[int] = 1, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.Tensor] = None, | |
prompt_embeds: Optional[torch.Tensor] = None, | |
pooled_prompt_embeds: Optional[torch.Tensor] = None, | |
prompt_attention_mask: Optional[torch.Tensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
attention_kwargs: Optional[dict] = None, | |
callback_on_step_end: Optional[Union[callable, PipelineCallback, MultiPipelineCallbacks]] = None, | |
callback_on_step_end_tensor_inputs: Optional[List[str]] = None, | |
prompt_template: Optional[dict] = DEFAULT_PROMPT_TEMPLATE, | |
max_sequence_length: int = 256, | |
image_latents: Optional[torch.Tensor] = None, | |
): | |
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): | |
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs | |
# 1. Check inputs. Raise error if not correct | |
pipe.check_inputs( | |
prompt, | |
prompt_2, | |
height, | |
width, | |
prompt_embeds, | |
callback_on_step_end_tensor_inputs, | |
prompt_template, | |
) | |
pipe._guidance_scale = guidance_scale | |
pipe._attention_kwargs = attention_kwargs | |
pipe._current_timestep = None | |
pipe._interrupt = False | |
device = pipe._execution_device | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
# 3. Encode input prompt | |
prompt_embeds, pooled_prompt_embeds, prompt_attention_mask = pipe.encode_prompt( | |
prompt=prompt, | |
prompt_2=prompt_2, | |
prompt_template=prompt_template, | |
num_videos_per_prompt=num_videos_per_prompt, | |
prompt_embeds=prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
prompt_attention_mask=prompt_attention_mask, | |
device=device, | |
max_sequence_length=max_sequence_length, | |
) | |
transformer_dtype = pipe.transformer.dtype | |
prompt_embeds = prompt_embeds.to(transformer_dtype) | |
prompt_attention_mask = prompt_attention_mask.to(transformer_dtype) | |
if pooled_prompt_embeds is not None: | |
pooled_prompt_embeds = pooled_prompt_embeds.to(transformer_dtype) | |
# 4. Prepare timesteps | |
sigmas = np.linspace(1.0, 0.0, num_inference_steps + 1)[:-1] if sigmas is None else sigmas | |
timesteps, num_inference_steps = retrieve_timesteps( | |
pipe.scheduler, | |
num_inference_steps, | |
device, | |
sigmas=sigmas, | |
) | |
# 5. Prepare latent variables | |
num_channels_latents = pipe.transformer.config.in_channels | |
num_latent_frames = (num_frames - 1) // pipe.vae_scale_factor_temporal + 1 | |
latents = pipe.prepare_latents( | |
batch_size * num_videos_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
num_latent_frames, | |
torch.float32, | |
device, | |
generator, | |
latents, | |
) | |
# 6. Prepare guidance condition | |
guidance = torch.tensor([guidance_scale] * latents.shape[0], dtype=transformer_dtype, device=device) * 1000.0 | |
# 7. Denoising loop | |
num_warmup_steps = len(timesteps) - num_inference_steps * pipe.scheduler.order | |
pipe._num_timesteps = len(timesteps) | |
pipe.text_encoder.to("cpu") | |
pipe.text_encoder_2.to("cpu") | |
torch.cuda.empty_cache() | |
with pipe.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
if pipe.interrupt: | |
continue | |
pipe._current_timestep = t | |
latent_model_input = latents.to(transformer_dtype) | |
timestep = t.expand(latents.shape[0]).to(latents.dtype) | |
noise_pred = pipe.transformer( | |
hidden_states=torch.cat([latent_model_input, image_latents], dim=1), | |
timestep=timestep, | |
encoder_hidden_states=prompt_embeds, | |
encoder_attention_mask=prompt_attention_mask, | |
pooled_projections=pooled_prompt_embeds, | |
guidance=guidance, | |
attention_kwargs=attention_kwargs, | |
return_dict=False, | |
)[0] | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = pipe.scheduler.step(noise_pred, t, latents, return_dict=False)[0] | |
if callback_on_step_end is not None: | |
callback_kwargs = {} | |
for k in callback_on_step_end_tensor_inputs: | |
callback_kwargs[k] = locals()[k] | |
callback_outputs = callback_on_step_end(pipe, i, t, callback_kwargs) | |
latents = callback_outputs.pop("latents", latents) | |
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
# call the callback, if provided | |
if i < len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % pipe.scheduler.order == 0): | |
progress_bar.update() | |
pipe._current_timestep = None | |
if not output_type == "latent": | |
latents = latents.to(pipe.vae.dtype) / pipe.vae.config.scaling_factor | |
video = pipe.vae.decode(latents, return_dict=False)[0] | |
video = pipe.video_processor.postprocess_video(video, output_type=output_type) | |
else: | |
video = latents | |
# Offload all models | |
pipe.maybe_free_model_hooks() | |
if not return_dict: | |
return (video,) | |
return HunyuanVideoPipelineOutput(frames=video) | |
def main(): | |
# Define the interface inputs | |
with gr.Blocks(css=".gradio-container { max-width: 80vw; margin: 0 auto; }, /* Target all media elements (img, video, audio) within table cells */ tr td img, tr td video, tr td audio { max-height: 240px; object-fit: contain; display: block; width: auto; } /* Target all table cells within table rows */ tr td { overflow: hidden; }") as demo: | |
with gr.Group(): | |
gr.Markdown("""# HunyuanVideo Keyframe Control Lora for Video Generation | |
**Generate videos using the HunyuanVideo model with a prompt and two (or more) frames as conditions. Gradio / HF Spaces implementation demo.** | |
--- | |
For more technical information check out the [original repo by dashtoon.](https://huggingface.co/dashtoon/hunyuan-video-keyframe-control-lora) Special shoutout to @pftq for work on optimization and ideas. Gradio Implementation by [AI Without Borders](https://huggingface.co/aiwithoutborders-xyz); this repo will be moved to the org's namespace once billing is sorted. | |
* Unfortunately, it's still difficult to run on a ZeroGPU space, but we're getting closer. Until then, or until we are granted a GPU allocation, this space was created for you to **DUPLICATE** and begin generating on your own hardware.. | |
I will fill out a request for GPU allocation for the demo with HF soon. | |
""") | |
with gr.Row(): | |
with gr.Column(scale=5): | |
with gr.Row(): | |
prompt_textbox = gr.Textbox(label="Prompt", value="a subject ...", scale=2) | |
resolution = gr.Dropdown( | |
label="Resolution", | |
choices=["720x1280", "544x960", "1280x720", "960x544", "720x720"], | |
value="544x960" | |
) | |
frame1 = gr.Image(label="Frame 1", type="pil") | |
frame2 = gr.Image(label="Frame 2", type="pil") | |
num_inference_steps = gr.Slider(minimum=1, maximum=100, step=1, label="Number of Inference Steps", value=30) | |
guidance_scale = gr.Slider(minimum=0.1, maximum=20, step=0.1, label="Guidance Scale", value=6.0) | |
num_frames = gr.Slider(minimum=1, maximum=129, step=1, label="Number of Frames", value=49) | |
generate_button = gr.Button("Generate Video") | |
with gr.Column(scale=3): | |
outputs = gr.Video(label="Generated Video") | |
with gr.Accordion(label="Examples"): | |
markdown_content = read_markdown_file("examples.md") | |
gr.Markdown(markdown_content, sanitize_html=False) | |
with gr.Accordion(): | |
gr.Markdown(""" | |
## HunyuanVideo Keyframe Control Lora is an adapter for HunyuanVideo T2V model for keyframe-based video generation. | |
--- | |
**Our architecture builds upon existing models, introducing key enhancements to optimize keyframe-based video generation**: | |
* We modify the input patch embedding projection layer to effectively incorporate keyframe information. By adjusting the convolutional input parameters, we enable the model to process image inputs within the Diffusion Transformer (DiT) framework. | |
* We apply Low-Rank Adaptation (LoRA) across all linear layers and the convolutional input layer. This approach facilitates efficient fine-tuning by introducing low-rank matrices that approximate the weight updates, thereby preserving the base model's foundational capabilities while reducing the number of trainable parameters. | |
* The model is conditioned on user-defined keyframes, allowing precise control over the generated video's start and end frames. This conditioning ensures that the generated content aligns seamlessly with the specified keyframes, enhancing the coherence and narrative flow of the video. | |
## Recommended Settings | |
1. The model works best on human subjects. Single subject images work slightly better. | |
2. It is recommended to use the following image generation resolutions `720x1280`, `544x960`, `1280x720`, `960x544`. | |
3. It is recommended to set frames from 33 upto 97. Can go upto 121 frames as well (but not tested much). | |
4. Prompting helps a lot but works even without. The prompt can be as simple as just the name of the object you want to generate or can be detailed. | |
5. `num_inference_steps` is recommended to be 50, but for fast results you can use 30 as well. Anything less than 30 is not recommended. | |
## FINAL THOUGHTS: This ZeroGPU space, while successfully loaded, has its memory packed to the rim. If you're lucky you may be able to sneak in a small demo inference here and there, but you will most definitely not be using the recommended settings listed above. Help, of course, is not only welcome but very much appreciated. Learn more about our non-profit initiative, [AI Without Borders](https://huggingface.co/aiwithoutborders-xyz), by following us on Huggingface or on [X](http://x.com/borderlesstools), where we will be announcing a handful of exciting developments. | |
""", sanitize_html=False, elem_id="md_footer", container=True) | |
generate_button.click(generate_video, inputs=[prompt_textbox, frame1, frame2, resolution, guidance_scale, num_frames, num_inference_steps], outputs=outputs) | |
demo.launch(show_error=True) | |
if __name__ == "__main__": | |
main() |