LPX55's picture
Update app_optimized.py
a9950d6 verified
import os
import gradio as gr
import safetensors.torch
import torchvision.transforms.v2 as transforms
import cv2
import torch
from torch.utils.bottleneck import BottleNeck
import numpy as np
from typing import List, Optional, Tuple, Union
from PIL import Image
import io
from io import BytesIO
from diffusers import HunyuanVideoPipeline, FlowMatchEulerDiscreteScheduler
from diffusers.models.transformers.transformer_hunyuan_video import HunyuanVideoPatchEmbed, HunyuanVideoTransformer3DModel
from diffusers.utils import export_to_video
from diffusers.models.attention import Attention
from diffusers.utils.state_dict_utils import convert_state_dict_to_diffusers, convert_unet_state_dict_to_peft
from peft import LoraConfig, get_peft_model_state_dict, set_peft_model_state_dict
from diffusers.models.embeddings import apply_rotary_emb
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
from diffusers.loaders import HunyuanVideoLoraLoaderMixin
from diffusers.models import AutoencoderKLHunyuanVideo, HunyuanVideoTransformer3DModel
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
from diffusers.utils import is_torch_xla_available, logging, replace_example_docstring
from diffusers.utils.torch_utils import randn_tensor
from diffusers.video_processor import VideoProcessor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.hunyuan_video.pipeline_output import HunyuanVideoPipelineOutput
from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import retrieve_timesteps, DEFAULT_PROMPT_TEMPLATE
from diffusers.utils import load_image
from huggingface_hub import hf_hub_download
import requests
import io
device = "cuda" if torch.cuda.is_available() else "cpu"
# Define video transformations
video_transforms = transforms.Compose(
[
transforms.Lambda(lambda x: x / 255.0),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
]
)
model_id = "hunyuanvideo-community/HunyuanVideo"
lora_path = hf_hub_download("dashtoon/hunyuan-video-keyframe-control-lora", "i2v.sft") # Replace with the actual LORA path
transformer = HunyuanVideoTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.float16)
global pipe
pipe = HunyuanVideoPipeline.from_pretrained(model_id, transformer=transformer, torch_dtype=torch.float16)
# Enable memory savings
pipe.vae.enable_tiling()
pipe.enable_model_cpu_offload()
with torch.no_grad(): # enable image inputs
initial_input_channels = pipe.transformer.config.in_channels
new_img_in = HunyuanVideoPatchEmbed(
patch_size=(pipe.transformer.config.patch_size_t, pipe.transformer.config.patch_size, pipe.transformer.config.patch_size),
in_chans=pipe.transformer.config.in_channels * 2,
embed_dim=pipe.transformer.config.num_attention_heads * pipe.transformer.config.attention_head_dim,
)
new_img_in = new_img_in.to(pipe.device, dtype=pipe.dtype)
new_img_in.proj.weight.zero_()
new_img_in.proj.weight[:, :initial_input_channels].copy_(pipe.transformer.x_embedder.proj.weight)
if pipe.transformer.x_embedder.proj.bias is not None:
new_img_in.proj.bias.copy_(pipe.transformer.x_embedder.proj.bias)
pipe.transformer.x_embedder = new_img_in
lora_state_dict = safetensors.torch.load_file(lora_path, device="cuda")
transformer_lora_state_dict = {f'{k.replace("transformer.", "")}': v for k, v in lora_state_dict.items() if k.startswith("transformer.") and "lora" in k}
pipe.load_lora_into_transformer(transformer_lora_state_dict, transformer=pipe.transformer, adapter_name="i2v", _pipeline=pipe)
pipe.set_adapters(["i2v"], adapter_weights=[1.0])
pipe.fuse_lora(components=["transformer"], lora_scale=1.0, adapter_names=["i2v"])
pipe.unload_lora_weights()
def resize_image_to_bucket(image: Union[Image.Image, np.ndarray], bucket_reso: Tuple[int, int]) -> np.ndarray:
"""
Resize the image to the bucket resolution.
"""
if isinstance(image, Image.Image):
image = np.array(image)
elif not isinstance(image, np.ndarray):
raise ValueError("Image must be a PIL Image or NumPy array")
image_height, image_width = image.shape[:2]
if bucket_reso == (image_width, image_height):
return image
bucket_width, bucket_height = bucket_reso
scale_width = bucket_width / image_width
scale_height = bucket_height / image_height
scale = max(scale_width, scale_height)
image_width = int(image_width * scale + 0.5)
image_height = int(image_height * scale + 0.5)
if scale > 1:
image = Image.fromarray(image)
image = image.resize((image_width, image_height), Image.LANCZOS)
image = np.array(image)
else:
image = cv2.resize(image, (image_width, image_height), interpolation=cv2.INTER_AREA)
# crop the image to the bucket resolution
crop_left = (image_width - bucket_width) // 2
crop_top = (image_height - bucket_height) // 2
image = image[crop_top:crop_top + bucket_height, crop_left:crop_left + bucket_width]
return image
def generate_video(prompt: str, frame1: Image.Image, frame2: Image.Image, resolution: str, guidance_scale: float, num_frames: int, num_inference_steps: int, fps: int) -> bytes:
# Debugging print statements
print(f"Frame 1 Type: {type(frame1)}")
print(f"Frame 2 Type: {type(frame2)}")
print(f"Resolution: {resolution}")
# Parse resolution
width, height = map(int, resolution.split('x'))
# Load and preprocess frames
cond_frame1 = np.array(frame1)
cond_frame2 = np.array(frame2)
cond_frame1 = resize_image_to_bucket(cond_frame1, bucket_reso=(width, height))
cond_frame2 = resize_image_to_bucket(cond_frame2, bucket_reso=(width, height))
cond_video = np.zeros(shape=(num_frames, height, width, 3))
cond_video[0], cond_video[-1] = cond_frame1, cond_frame2
cond_video = torch.from_numpy(cond_video.copy()).permute(0, 3, 1, 2)
cond_video = torch.stack([video_transforms(x) for x in cond_video], dim=0).unsqueeze(0)
with torch.no_grad():
image_or_video = cond_video.to(device="cuda", dtype=pipe.dtype)
image_or_video = image_or_video.permute(0, 2, 1, 3, 4).contiguous() # [B, F, C, H, W] -> [B, C, F, H, W]
cond_latents = pipe.vae.encode(image_or_video).latent_dist.sample()
cond_latents = cond_latents * pipe.vae.config.scaling_factor
cond_latents = cond_latents.to(device=device, dtype=pipe.dtype)
assert not torch.any(torch.isnan(cond_latents))
# Generate video
video = call_pipe(
pipe,
prompt=prompt,
num_frames=num_frames,
num_inference_steps=num_inference_steps,
image_latents=cond_latents,
width=width,
height=height,
guidance_scale=guidance_scale,
generator=torch.Generator(device="cuda").manual_seed(0),
).frames[0]
# Export to video
video_path = "output.mp4"
# video_bytes = io.BytesIO()
export_to_video(video, video_path, fps=fps)
torch.cuda.empty_cache()
return video_path
@torch.inference_mode()
def call_pipe(
pipe,
prompt: Union[str, List[str]] = None,
prompt_2: Union[str, List[str]] = None,
height: int = 720,
width: int = 1280,
num_frames: int = 129,
num_inference_steps: int = 50,
sigmas: Optional[List[float]] = None,
guidance_scale: float = 6.0,
num_videos_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
pooled_prompt_embeds: Optional[torch.Tensor] = None,
prompt_attention_mask: Optional[torch.Tensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
attention_kwargs: Optional[dict] = None,
callback_on_step_end: Optional[Union[callable, PipelineCallback, MultiPipelineCallbacks]] = None,
callback_on_step_end_tensor_inputs: Optional[List[str]] = None,
prompt_template: Optional[dict] = DEFAULT_PROMPT_TEMPLATE,
max_sequence_length: int = 256,
image_latents: Optional[torch.Tensor] = None,
):
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
# 1. Check inputs. Raise error if not correct
pipe.check_inputs(
prompt,
prompt_2,
height,
width,
prompt_embeds,
callback_on_step_end_tensor_inputs,
prompt_template,
)
pipe._guidance_scale = guidance_scale
pipe._attention_kwargs = attention_kwargs
pipe._current_timestep = None
pipe._interrupt = False
device = pipe._execution_device
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
# 3. Encode input prompt
prompt_embeds, pooled_prompt_embeds, prompt_attention_mask = pipe.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
prompt_template=prompt_template,
num_videos_per_prompt=num_videos_per_prompt,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
prompt_attention_mask=prompt_attention_mask,
device=device,
max_sequence_length=max_sequence_length,
)
transformer_dtype = pipe.transformer.dtype
prompt_embeds = prompt_embeds.to(transformer_dtype)
prompt_attention_mask = prompt_attention_mask.to(transformer_dtype)
if pooled_prompt_embeds is not None:
pooled_prompt_embeds = pooled_prompt_embeds.to(transformer_dtype)
# 4. Prepare timesteps
sigmas = np.linspace(1.0, 0.0, num_inference_steps + 1)[:-1] if sigmas is None else sigmas
timesteps, num_inference_steps = retrieve_timesteps(
pipe.scheduler,
num_inference_steps,
device,
sigmas=sigmas,
)
# 5. Prepare latent variables
num_channels_latents = pipe.transformer.config.in_channels
num_latent_frames = (num_frames - 1) // pipe.vae_scale_factor_temporal + 1
latents = pipe.prepare_latents(
batch_size * num_videos_per_prompt,
num_channels_latents,
height,
width,
num_latent_frames,
torch.float32,
device,
generator,
latents,
)
# 6. Prepare guidance condition
guidance = torch.tensor([guidance_scale] * latents.shape[0], dtype=transformer_dtype, device=device) * 1000.0
# 7. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * pipe.scheduler.order
pipe._num_timesteps = len(timesteps)
with pipe.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if pipe.interrupt:
continue
pipe._current_timestep = t
latent_model_input = latents.to(transformer_dtype)
timestep = t.expand(latents.shape[0]).to(latents.dtype)
noise_pred = pipe.transformer(
hidden_states=torch.cat([latent_model_input, image_latents], dim=1),
timestep=timestep,
encoder_hidden_states=prompt_embeds,
encoder_attention_mask=prompt_attention_mask,
pooled_projections=pooled_prompt_embeds,
guidance=guidance,
attention_kwargs=attention_kwargs,
return_dict=False,
)[0]
# compute the previous noisy sample x_t -> x_t-1
latents = pipe.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(pipe, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % pipe.scheduler.order == 0):
progress_bar.update()
pipe._current_timestep = None
if not output_type == "latent":
latents = latents.to(pipe.vae.dtype) / pipe.vae.config.scaling_factor
video = pipe.vae.decode(latents, return_dict=False)[0]
video = pipe.video_processor.postprocess_video(video, output_type=output_type)
else:
video = latents
# Offload all models
pipe.maybe_free_model_hooks()
if not return_dict:
return (video,)
return HunyuanVideoPipelineOutput(frames=video)
def main():
# Define the interface inputs
inputs = [
gr.Textbox(label="Prompt", value="a woman"),
gr.Image(label="Frame 1", type="pil"),
gr.Image(label="Frame 2", type="pil"),
gr.Dropdown(
label="Resolution",
choices=["720x1280", "544x960", "1280x720", "960x544", "720x720"],
value="544x960"
),
# gr.Textbox(label="Frame 1 URL", value="https://i-bacon.bunkr.ru/11b45aa7-630b-4189-996f-a6b37a697786.png"),
# gr.Textbox(label="Frame 2 URL", value="https://i-bacon.bunkr.ru/2382224f-120e-482d-a75d-f1a1bf13038c.png"),
gr.Slider(minimum=0.1, maximum=20, step=0.1, label="Guidance Scale", value=6.0),
gr.Slider(minimum=1, maximum=129, step=1, label="Number of Frames", value=49),
gr.Slider(minimum=1, maximum=100, step=1, label="Number of Inference Steps", value=30),
gr.Slider(minimum=1, maximum=60, step=1, label="FPS", value=16)
]
# Define the interface outputs
outputs = [
gr.Video(label="Generated Video"),
]
# Create the Gradio interface
iface = gr.Interface(
fn=generate_video,
inputs=inputs,
outputs=outputs,
title="Hunyuan Video Generator",
description="Generate videos using the HunyuanVideo model with a prompt and two frames as conditions.",
)
# Launch the Gradio app
iface.launch(show_error=True)
if __name__ == "__main__":
main()