Spaces:
Runtime error
Runtime error
Create alt_gen.py
Browse files- alt_gen.py +668 -0
alt_gen.py
ADDED
@@ -0,0 +1,668 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional, Tuple, Union
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
import safetensors.torch
|
6 |
+
import torch
|
7 |
+
import torchvision.transforms.v2 as transforms
|
8 |
+
from diffusers import FlowMatchEulerDiscreteScheduler, HunyuanVideoPipeline
|
9 |
+
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
10 |
+
from diffusers.loaders import HunyuanVideoLoraLoaderMixin
|
11 |
+
from diffusers.models import AutoencoderKLHunyuanVideo, HunyuanVideoTransformer3DModel
|
12 |
+
from diffusers.models.attention import Attention
|
13 |
+
from diffusers.models.embeddings import apply_rotary_emb
|
14 |
+
from diffusers.models.transformers.transformer_hunyuan_video import HunyuanVideoPatchEmbed, HunyuanVideoTransformer3DModel
|
15 |
+
from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import DEFAULT_PROMPT_TEMPLATE, retrieve_timesteps
|
16 |
+
from diffusers.pipelines.hunyuan_video.pipeline_output import HunyuanVideoPipelineOutput
|
17 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
18 |
+
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
19 |
+
from diffusers.utils import export_to_video, is_torch_xla_available, load_image, logging, replace_example_docstring
|
20 |
+
from diffusers.utils.state_dict_utils import convert_state_dict_to_diffusers, convert_unet_state_dict_to_peft
|
21 |
+
from diffusers.utils.torch_utils import randn_tensor
|
22 |
+
from diffusers.video_processor import VideoProcessor
|
23 |
+
from peft import LoraConfig, get_peft_model_state_dict, set_peft_model_state_dict
|
24 |
+
from PIL import Image
|
25 |
+
from typing import Dict, List
|
26 |
+
from typing import Any
|
27 |
+
from typing import Callable
|
28 |
+
import argparse
|
29 |
+
import os
|
30 |
+
import time
|
31 |
+
import random
|
32 |
+
import sys
|
33 |
+
|
34 |
+
# 20250305 pftq load settings for customization ####
|
35 |
+
parser = argparse.ArgumentParser()
|
36 |
+
parser.add_argument("--base_model_id", type=str, default="hunyuanvideo-community/HunyuanVideo")
|
37 |
+
parser.add_argument("--transformer_model_id", type=str, default="hunyuanvideo-community/HunyuanVideo")
|
38 |
+
parser.add_argument("--lora_path", type=str, default="i2v.sft")
|
39 |
+
parser.add_argument("--use_sage", action="store_true")
|
40 |
+
parser.add_argument("--use_flash", action="store_true")
|
41 |
+
parser.add_argument("--cfg", type=float, default=6.0)
|
42 |
+
parser.add_argument("--num_frames", type=int, default=77)
|
43 |
+
parser.add_argument("--steps", type=int, default=50)
|
44 |
+
parser.add_argument("--seed", type=int, default=-1)
|
45 |
+
parser.add_argument("--prompt", type=str, default="a woman")
|
46 |
+
parser.add_argument("--height", type=int, default=1280)
|
47 |
+
parser.add_argument("--width", type=int, default=720)
|
48 |
+
parser.add_argument("--video_num", type=int, default=1)
|
49 |
+
parser.add_argument("--image1", type=str, default="https://content.dashtoon.ai/stability-images/e524013d-55d4-483a-b80a-dfc51d639158.png")
|
50 |
+
parser.add_argument("--image2", type=str, default="https://content.dashtoon.ai/stability-images/0b29c296-0a90-4b92-96b9-1ed0ae21e480.png")
|
51 |
+
parser.add_argument("--image3", type=str, default="")
|
52 |
+
parser.add_argument("--image4", type=str, default="")
|
53 |
+
parser.add_argument("--image5", type=str, default="")
|
54 |
+
parser.add_argument("--fps", type=int, default=24)
|
55 |
+
parser.add_argument("--mbps", type=float, default=7)
|
56 |
+
parser.add_argument("--color_match", action="store_true")
|
57 |
+
|
58 |
+
args = parser.parse_args()
|
59 |
+
|
60 |
+
# 20250305 pftq: from main repo at https://github.com/dashtoon/hunyuan-video-keyframe-control-lora/blob/main/hv_control_lora_inference.py
|
61 |
+
use_sage = False
|
62 |
+
use_flash = False
|
63 |
+
if args.use_sage:
|
64 |
+
try:
|
65 |
+
from sageattention import sageattn, sageattn_varlen
|
66 |
+
use_sage = True
|
67 |
+
except ImportError:
|
68 |
+
sageattn, sageattn_varlen = None, None
|
69 |
+
elif args.use_flash:
|
70 |
+
try:
|
71 |
+
import flash_attn
|
72 |
+
from flash_attn.flash_attn_interface import _flash_attn_forward, flash_attn_varlen_func
|
73 |
+
use_flash = True
|
74 |
+
except ImportError:
|
75 |
+
flash_attn, _flash_attn_forward, flash_attn_varlen_func = None, None, None
|
76 |
+
print("Using SageAtten: "+str(use_sage))
|
77 |
+
print("Using FlashAttn: "+str(use_flash))
|
78 |
+
|
79 |
+
|
80 |
+
video_transforms = transforms.Compose(
|
81 |
+
[
|
82 |
+
transforms.Lambda(lambda x: x / 255.0),
|
83 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
|
84 |
+
]
|
85 |
+
)
|
86 |
+
|
87 |
+
|
88 |
+
def resize_image_to_bucket(image: Union[Image.Image, np.ndarray], bucket_reso: tuple[int, int]) -> np.ndarray:
|
89 |
+
"""
|
90 |
+
Resize the image to the bucket resolution.
|
91 |
+
"""
|
92 |
+
is_pil_image = isinstance(image, Image.Image)
|
93 |
+
if is_pil_image:
|
94 |
+
image_width, image_height = image.size
|
95 |
+
else:
|
96 |
+
image_height, image_width = image.shape[:2]
|
97 |
+
|
98 |
+
if bucket_reso == (image_width, image_height):
|
99 |
+
return np.array(image) if is_pil_image else image
|
100 |
+
|
101 |
+
bucket_width, bucket_height = bucket_reso
|
102 |
+
|
103 |
+
scale_width = bucket_width / image_width
|
104 |
+
scale_height = bucket_height / image_height
|
105 |
+
scale = max(scale_width, scale_height)
|
106 |
+
image_width = int(image_width * scale + 0.5)
|
107 |
+
image_height = int(image_height * scale + 0.5)
|
108 |
+
|
109 |
+
if scale > 1:
|
110 |
+
image = Image.fromarray(image) if not is_pil_image else image
|
111 |
+
image = image.resize((image_width, image_height), Image.LANCZOS)
|
112 |
+
image = np.array(image)
|
113 |
+
else:
|
114 |
+
image = np.array(image) if is_pil_image else image
|
115 |
+
image = cv2.resize(image, (image_width, image_height), interpolation=cv2.INTER_AREA)
|
116 |
+
|
117 |
+
# crop the image to the bucket resolution
|
118 |
+
crop_left = (image_width - bucket_width) // 2
|
119 |
+
crop_top = (image_height - bucket_height) // 2
|
120 |
+
image = image[crop_top : crop_top + bucket_height, crop_left : crop_left + bucket_width]
|
121 |
+
|
122 |
+
return image
|
123 |
+
|
124 |
+
# 20250305 pftq: from main repo at https://github.com/dashtoon/hunyuan-video-keyframe-control-lora/blob/main/hv_control_lora_inference.py
|
125 |
+
def get_cu_seqlens(attention_mask):
|
126 |
+
"""Calculate cu_seqlens_q, cu_seqlens_kv using attention_mask"""
|
127 |
+
batch_size = attention_mask.shape[0]
|
128 |
+
text_len = attention_mask.sum(dim=-1, dtype=torch.int)
|
129 |
+
max_len = attention_mask.shape[-1]
|
130 |
+
|
131 |
+
cu_seqlens = torch.zeros([2 * batch_size + 1], dtype=torch.int32, device="cuda")
|
132 |
+
|
133 |
+
for i in range(batch_size):
|
134 |
+
s = text_len[i]
|
135 |
+
s1 = i * max_len + s
|
136 |
+
s2 = (i + 1) * max_len
|
137 |
+
cu_seqlens[2 * i + 1] = s1
|
138 |
+
cu_seqlens[2 * i + 2] = s2
|
139 |
+
|
140 |
+
return cu_seqlens
|
141 |
+
class HunyuanVideoFlashAttnProcessor:
|
142 |
+
def __init__(self, use_flash_attn=True, use_sageattn=False):
|
143 |
+
self.use_flash_attn = use_flash_attn
|
144 |
+
self.use_sageattn = use_sageattn
|
145 |
+
if self.use_flash_attn:
|
146 |
+
assert flash_attn is not None, "Flash attention not available"
|
147 |
+
if self.use_sageattn:
|
148 |
+
assert sageattn is not None, "Sage attention not available"
|
149 |
+
|
150 |
+
def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, image_rotary_emb=None):
|
151 |
+
if attn.add_q_proj is None and encoder_hidden_states is not None:
|
152 |
+
hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)
|
153 |
+
|
154 |
+
query = attn.to_q(hidden_states)
|
155 |
+
key = attn.to_k(hidden_states)
|
156 |
+
value = attn.to_v(hidden_states)
|
157 |
+
|
158 |
+
query = query.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
159 |
+
key = key.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
160 |
+
value = value.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
161 |
+
|
162 |
+
if attn.norm_q is not None:
|
163 |
+
query = attn.norm_q(query)
|
164 |
+
if attn.norm_k is not None:
|
165 |
+
key = attn.norm_k(key)
|
166 |
+
|
167 |
+
if image_rotary_emb is not None:
|
168 |
+
if attn.add_q_proj is None and encoder_hidden_states is not None:
|
169 |
+
query = torch.cat(
|
170 |
+
[
|
171 |
+
apply_rotary_emb(query[:, :, : -encoder_hidden_states.shape[1]], image_rotary_emb),
|
172 |
+
query[:, :, -encoder_hidden_states.shape[1] :],
|
173 |
+
],
|
174 |
+
dim=2,
|
175 |
+
)
|
176 |
+
key = torch.cat(
|
177 |
+
[
|
178 |
+
apply_rotary_emb(key[:, :, : -encoder_hidden_states.shape[1]], image_rotary_emb),
|
179 |
+
key[:, :, -encoder_hidden_states.shape[1] :],
|
180 |
+
],
|
181 |
+
dim=2,
|
182 |
+
)
|
183 |
+
else:
|
184 |
+
query = apply_rotary_emb(query, image_rotary_emb)
|
185 |
+
key = apply_rotary_emb(key, image_rotary_emb)
|
186 |
+
|
187 |
+
batch_size = hidden_states.shape[0]
|
188 |
+
img_seq_len = hidden_states.shape[1]
|
189 |
+
txt_seq_len = 0
|
190 |
+
|
191 |
+
if attn.add_q_proj is not None and encoder_hidden_states is not None:
|
192 |
+
encoder_query = attn.add_q_proj(encoder_hidden_states)
|
193 |
+
encoder_key = attn.add_k_proj(encoder_hidden_states)
|
194 |
+
encoder_value = attn.add_v_proj(encoder_hidden_states)
|
195 |
+
|
196 |
+
encoder_query = encoder_query.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
197 |
+
encoder_key = encoder_key.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
198 |
+
encoder_value = encoder_value.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
199 |
+
|
200 |
+
if attn.norm_added_q is not None:
|
201 |
+
encoder_query = attn.norm_added_q(encoder_query)
|
202 |
+
if attn.norm_added_k is not None:
|
203 |
+
encoder_key = attn.norm_added_k(encoder_key)
|
204 |
+
|
205 |
+
query = torch.cat([query, encoder_query], dim=2)
|
206 |
+
key = torch.cat([key, encoder_key], dim=2)
|
207 |
+
value = torch.cat([value, encoder_value], dim=2)
|
208 |
+
|
209 |
+
txt_seq_len = encoder_hidden_states.shape[1]
|
210 |
+
|
211 |
+
max_seqlen_q = max_seqlen_kv = img_seq_len + txt_seq_len
|
212 |
+
cu_seqlens_q = cu_seqlens_kv = get_cu_seqlens(attention_mask)
|
213 |
+
|
214 |
+
query = query.transpose(1, 2).reshape(-1, query.shape[1], query.shape[3])
|
215 |
+
key = key.transpose(1, 2).reshape(-1, key.shape[1], key.shape[3])
|
216 |
+
value = value.transpose(1, 2).reshape(-1, value.shape[1], value.shape[3])
|
217 |
+
|
218 |
+
if self.use_flash_attn:
|
219 |
+
hidden_states = flash_attn_varlen_func(
|
220 |
+
query, key, value, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv
|
221 |
+
)
|
222 |
+
elif self.use_sageattn:
|
223 |
+
hidden_states = sageattn_varlen(query, key, value, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
|
224 |
+
else:
|
225 |
+
raise NotImplementedError("Please set use_flash_attn=True or use_sageattn=True")
|
226 |
+
|
227 |
+
hidden_states = hidden_states.reshape(batch_size, max_seqlen_q, -1)
|
228 |
+
hidden_states = hidden_states.to(query.dtype)
|
229 |
+
|
230 |
+
if encoder_hidden_states is not None:
|
231 |
+
hidden_states, encoder_hidden_states = (
|
232 |
+
hidden_states[:, : -encoder_hidden_states.shape[1]],
|
233 |
+
hidden_states[:, -encoder_hidden_states.shape[1] :],
|
234 |
+
)
|
235 |
+
|
236 |
+
if getattr(attn, "to_out", None) is not None:
|
237 |
+
hidden_states = attn.to_out[0](hidden_states)
|
238 |
+
hidden_states = attn.to_out[1](hidden_states)
|
239 |
+
|
240 |
+
if getattr(attn, "to_add_out", None) is not None:
|
241 |
+
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
242 |
+
|
243 |
+
return hidden_states, encoder_hidden_states
|
244 |
+
|
245 |
+
@torch.inference_mode()
|
246 |
+
def call_pipe(
|
247 |
+
pipe,
|
248 |
+
prompt: Union[str, List[str]] = None,
|
249 |
+
prompt_2: Union[str, List[str]] = None,
|
250 |
+
height: int = 720,
|
251 |
+
width: int = 1280,
|
252 |
+
num_frames: int = 129,
|
253 |
+
num_inference_steps: int = 50,
|
254 |
+
sigmas: List[float] = None,
|
255 |
+
guidance_scale: float = 6.0,
|
256 |
+
num_videos_per_prompt: Optional[int] = 1,
|
257 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
258 |
+
latents: Optional[torch.Tensor] = None,
|
259 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
260 |
+
pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
261 |
+
prompt_attention_mask: Optional[torch.Tensor] = None,
|
262 |
+
output_type: Optional[str] = "pil",
|
263 |
+
return_dict: bool = True,
|
264 |
+
attention_kwargs: Optional[Dict[str, Any]] = None,
|
265 |
+
callback_on_step_end: Optional[Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]] = None,
|
266 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
267 |
+
prompt_template: Dict[str, Any] = DEFAULT_PROMPT_TEMPLATE,
|
268 |
+
max_sequence_length: int = 256,
|
269 |
+
image_latents: Optional[torch.Tensor] = None,
|
270 |
+
):
|
271 |
+
|
272 |
+
|
273 |
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
274 |
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
275 |
+
|
276 |
+
# 1. Check inputs. Raise error if not correct
|
277 |
+
pipe.check_inputs(
|
278 |
+
prompt,
|
279 |
+
prompt_2,
|
280 |
+
height,
|
281 |
+
width,
|
282 |
+
prompt_embeds,
|
283 |
+
callback_on_step_end_tensor_inputs,
|
284 |
+
prompt_template,
|
285 |
+
)
|
286 |
+
|
287 |
+
pipe._guidance_scale = guidance_scale
|
288 |
+
pipe._attention_kwargs = attention_kwargs
|
289 |
+
pipe._current_timestep = None
|
290 |
+
pipe._interrupt = False
|
291 |
+
|
292 |
+
device = pipe._execution_device
|
293 |
+
|
294 |
+
# 2. Define call parameters
|
295 |
+
if prompt is not None and isinstance(prompt, str):
|
296 |
+
batch_size = 1
|
297 |
+
elif prompt is not None and isinstance(prompt, list):
|
298 |
+
batch_size = len(prompt)
|
299 |
+
else:
|
300 |
+
batch_size = prompt_embeds.shape[0]
|
301 |
+
|
302 |
+
# 3. Encode input prompt
|
303 |
+
prompt_embeds, pooled_prompt_embeds, prompt_attention_mask = pipe.encode_prompt(
|
304 |
+
prompt=prompt,
|
305 |
+
prompt_2=prompt_2,
|
306 |
+
prompt_template=prompt_template,
|
307 |
+
num_videos_per_prompt=num_videos_per_prompt,
|
308 |
+
prompt_embeds=prompt_embeds,
|
309 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
310 |
+
prompt_attention_mask=prompt_attention_mask,
|
311 |
+
device=device,
|
312 |
+
max_sequence_length=max_sequence_length,
|
313 |
+
)
|
314 |
+
|
315 |
+
transformer_dtype = pipe.transformer.dtype
|
316 |
+
prompt_embeds = prompt_embeds.to(transformer_dtype)
|
317 |
+
prompt_attention_mask = prompt_attention_mask.to(transformer_dtype)
|
318 |
+
if pooled_prompt_embeds is not None:
|
319 |
+
pooled_prompt_embeds = pooled_prompt_embeds.to(transformer_dtype)
|
320 |
+
|
321 |
+
# 4. Prepare timesteps
|
322 |
+
sigmas = np.linspace(1.0, 0.0, num_inference_steps + 1)[:-1] if sigmas is None else sigmas
|
323 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
324 |
+
pipe.scheduler,
|
325 |
+
num_inference_steps,
|
326 |
+
device,
|
327 |
+
sigmas=sigmas,
|
328 |
+
)
|
329 |
+
|
330 |
+
# 5. Prepare latent variables
|
331 |
+
num_channels_latents = pipe.transformer.config.in_channels
|
332 |
+
num_latent_frames = (num_frames - 1) // pipe.vae_scale_factor_temporal + 1
|
333 |
+
latents = pipe.prepare_latents(
|
334 |
+
batch_size * num_videos_per_prompt,
|
335 |
+
num_channels_latents,
|
336 |
+
height,
|
337 |
+
width,
|
338 |
+
num_latent_frames,
|
339 |
+
torch.float32,
|
340 |
+
device,
|
341 |
+
generator,
|
342 |
+
latents,
|
343 |
+
)
|
344 |
+
|
345 |
+
# 6. Prepare guidance condition
|
346 |
+
guidance = torch.tensor([guidance_scale] * latents.shape[0], dtype=transformer_dtype, device=device) * 1000.0
|
347 |
+
|
348 |
+
# 7. Denoising loop
|
349 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * pipe.scheduler.order
|
350 |
+
pipe._num_timesteps = len(timesteps)
|
351 |
+
# 20250305 pftq: added to properly offload to CPU, was out of memory otherwise
|
352 |
+
pipe.text_encoder.to("cpu")
|
353 |
+
pipe.text_encoder_2.to("cpu")
|
354 |
+
torch.cuda.empty_cache()
|
355 |
+
|
356 |
+
with pipe.progress_bar(total=num_inference_steps) as progress_bar:
|
357 |
+
for i, t in enumerate(timesteps):
|
358 |
+
if pipe.interrupt:
|
359 |
+
continue
|
360 |
+
|
361 |
+
pipe._current_timestep = t
|
362 |
+
latent_model_input = latents.to(transformer_dtype)
|
363 |
+
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
364 |
+
|
365 |
+
noise_pred = pipe.transformer(
|
366 |
+
hidden_states=torch.cat([latent_model_input, image_latents], dim=1),
|
367 |
+
timestep=timestep,
|
368 |
+
encoder_hidden_states=prompt_embeds,
|
369 |
+
encoder_attention_mask=prompt_attention_mask,
|
370 |
+
pooled_projections=pooled_prompt_embeds,
|
371 |
+
guidance=guidance,
|
372 |
+
attention_kwargs=attention_kwargs,
|
373 |
+
return_dict=False,
|
374 |
+
)[0]
|
375 |
+
|
376 |
+
# compute the previous noisy sample x_t -> x_t-1
|
377 |
+
latents = pipe.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
378 |
+
|
379 |
+
if callback_on_step_end is not None:
|
380 |
+
callback_kwargs = {}
|
381 |
+
for k in callback_on_step_end_tensor_inputs:
|
382 |
+
callback_kwargs[k] = locals()[k]
|
383 |
+
callback_outputs = callback_on_step_end(pipe, i, t, callback_kwargs)
|
384 |
+
|
385 |
+
latents = callback_outputs.pop("latents", latents)
|
386 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
387 |
+
|
388 |
+
# call the callback, if provided
|
389 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % pipe.scheduler.order == 0):
|
390 |
+
progress_bar.update()
|
391 |
+
pipe._current_timestep = None
|
392 |
+
|
393 |
+
if not output_type == "latent":
|
394 |
+
latents = latents.to(pipe.vae.dtype) / pipe.vae.config.scaling_factor
|
395 |
+
video = pipe.vae.decode(latents, return_dict=False)[0]
|
396 |
+
video = pipe.video_processor.postprocess_video(video, output_type=output_type)
|
397 |
+
else:
|
398 |
+
video = latents
|
399 |
+
|
400 |
+
# Offload all models
|
401 |
+
pipe.maybe_free_model_hooks()
|
402 |
+
|
403 |
+
if not return_dict:
|
404 |
+
return (video,)
|
405 |
+
|
406 |
+
return HunyuanVideoPipelineOutput(frames=video)
|
407 |
+
|
408 |
+
#20250305 pftq: customizable bitrate
|
409 |
+
# Function to check if FFmpeg is installed
|
410 |
+
import subprocess # For FFmpeg functionality
|
411 |
+
def is_ffmpeg_installed():
|
412 |
+
try:
|
413 |
+
subprocess.run(["ffmpeg", "-version"], stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True)
|
414 |
+
return True
|
415 |
+
except (subprocess.CalledProcessError, FileNotFoundError):
|
416 |
+
return False
|
417 |
+
|
418 |
+
# FFmpeg-based video saving with bitrate control
|
419 |
+
def save_video_with_ffmpeg(frames, output_path, fps, bitrate_mbps, metadata_comment=None):
|
420 |
+
frames = [np.array(frame) for frame in frames]
|
421 |
+
height, width, _ = frames[0].shape
|
422 |
+
bitrate = f"{bitrate_mbps}M"
|
423 |
+
cmd = [
|
424 |
+
"ffmpeg",
|
425 |
+
"-y",
|
426 |
+
"-f", "rawvideo",
|
427 |
+
"-vcodec", "rawvideo",
|
428 |
+
"-s", f"{width}x{height}",
|
429 |
+
"-pix_fmt", "rgb24",
|
430 |
+
"-r", str(fps),
|
431 |
+
"-i", "-",
|
432 |
+
"-c:v", "libx264",
|
433 |
+
"-b:v", bitrate,
|
434 |
+
"-pix_fmt", "yuv420p",
|
435 |
+
"-preset", "medium",
|
436 |
+
]
|
437 |
+
|
438 |
+
# Add metadata comment if provided
|
439 |
+
if metadata_comment:
|
440 |
+
cmd.extend(["-metadata", f"comment={metadata_comment}"])
|
441 |
+
cmd.append(output_path)
|
442 |
+
|
443 |
+
process = subprocess.Popen(cmd, stdin=subprocess.PIPE, stderr=subprocess.PIPE)
|
444 |
+
for frame in frames:
|
445 |
+
process.stdin.write(frame.tobytes())
|
446 |
+
process.stdin.close()
|
447 |
+
process.wait()
|
448 |
+
stderr_output = process.stderr.read().decode()
|
449 |
+
if process.returncode != 0:
|
450 |
+
print(f"FFmpeg error: {stderr_output}")
|
451 |
+
else:
|
452 |
+
print(f"Video saved to {output_path} with FFmpeg")
|
453 |
+
|
454 |
+
# Fallback OpenCV-based video saving
|
455 |
+
def save_video_with_opencv(frames, output_path, fps, bitrate_mbps):
|
456 |
+
frames = [np.array(frame) for frame in frames]
|
457 |
+
height, width, _ = frames[0].shape
|
458 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
459 |
+
writer = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
460 |
+
# Note: cv2.CAP_PROP_BITRATE is not supported, so bitrate_mbps is ignored
|
461 |
+
for frame in frames:
|
462 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) # Convert RGB to BGR for OpenCV
|
463 |
+
writer.write(frame)
|
464 |
+
writer.release()
|
465 |
+
print(f"Video saved to {output_path} with OpenCV (bitrate control unavailable)")
|
466 |
+
|
467 |
+
# Wrapper to choose between FFmpeg and OpenCV
|
468 |
+
def save_video_with_quality(frames, output_path, fps, bitrate_mbps, metadata_comment=None):
|
469 |
+
if is_ffmpeg_installed():
|
470 |
+
save_video_with_ffmpeg(frames, output_path, fps, bitrate_mbps, metadata_comment)
|
471 |
+
else:
|
472 |
+
print("FFmpeg not found. Falling back to OpenCV (bitrate not customizable).")
|
473 |
+
save_video_with_opencv(frames, output_path, fps, bitrate_mbps)
|
474 |
+
|
475 |
+
# Reconstruct command-line with quotes and backslash+linebreak after argument-value pairs
|
476 |
+
def reconstruct_command_line(args, argv):
|
477 |
+
cmd_parts = [argv[0]] # Start with script name
|
478 |
+
args_dict = vars(args) # Convert args to dict
|
479 |
+
|
480 |
+
i = 1
|
481 |
+
while i < len(argv):
|
482 |
+
arg = argv[i]
|
483 |
+
if arg.startswith("--"):
|
484 |
+
key = arg[2:]
|
485 |
+
if key in args_dict:
|
486 |
+
value = args_dict[key]
|
487 |
+
if isinstance(value, bool):
|
488 |
+
if value:
|
489 |
+
cmd_parts.append(arg) # Boolean flag
|
490 |
+
i += 1
|
491 |
+
else:
|
492 |
+
# Combine argument and value into one part
|
493 |
+
if i + 1 < len(argv) and not argv[i + 1].startswith("--"):
|
494 |
+
next_val = argv[i + 1]
|
495 |
+
if isinstance(value, str):
|
496 |
+
cmd_parts.append(f'{arg} "{value}"') # Quote strings
|
497 |
+
else:
|
498 |
+
cmd_parts.append(f"{arg} {value}") # No quotes for numbers
|
499 |
+
i += 2
|
500 |
+
else:
|
501 |
+
# Handle missing value in argv (use parsed args)
|
502 |
+
if isinstance(value, str):
|
503 |
+
cmd_parts.append(f'{arg} "{value}"')
|
504 |
+
else:
|
505 |
+
cmd_parts.append(f"{arg} {value}")
|
506 |
+
i += 1
|
507 |
+
else:
|
508 |
+
i += 1
|
509 |
+
|
510 |
+
# Build multi-line string with backslash and newline except for the last part
|
511 |
+
if len(cmd_parts) > 1:
|
512 |
+
result = ""
|
513 |
+
for j, part in enumerate(cmd_parts):
|
514 |
+
if j < len(cmd_parts) - 1:
|
515 |
+
result += part + " \\\n"
|
516 |
+
else:
|
517 |
+
result += part # No trailing backslash on last part
|
518 |
+
return result
|
519 |
+
return cmd_parts[0] # Single arg case
|
520 |
+
|
521 |
+
|
522 |
+
# start executing here ###################
|
523 |
+
print("Initializing model...")
|
524 |
+
transformer_subfolder = "transformer"
|
525 |
+
if args.transformer_model_id == "Skywork/SkyReels-V1-Hunyuan-I2V":
|
526 |
+
transformer_subfolder = "" # 20250305 pftq: Error otherwise - Skywork/SkyReels-V1-Hunyuan-I2V does not appear to have a file named config.json.
|
527 |
+
transformer = HunyuanVideoTransformer3DModel.from_pretrained(args.transformer_model_id, subfolder=transformer_subfolder, torch_dtype=torch.bfloat16)
|
528 |
+
pipe = HunyuanVideoPipeline.from_pretrained(args.base_model_id, transformer=transformer, torch_dtype=torch.bfloat16)
|
529 |
+
|
530 |
+
# Enable memory savings
|
531 |
+
pipe.vae.enable_slicing()
|
532 |
+
pipe.vae.enable_tiling()
|
533 |
+
pipe.enable_model_cpu_offload()
|
534 |
+
|
535 |
+
# Apply flash attention to all transformer blocks
|
536 |
+
if use_sage or use_flash:
|
537 |
+
for block in pipe.transformer.transformer_blocks + pipe.transformer.single_transformer_blocks:
|
538 |
+
block.attn.processor = HunyuanVideoFlashAttnProcessor(use_flash_attn=use_flash, use_sageattn=use_sage)
|
539 |
+
|
540 |
+
with torch.no_grad(): # enable image inputs
|
541 |
+
initial_input_channels = pipe.transformer.config.in_channels
|
542 |
+
new_img_in = HunyuanVideoPatchEmbed(
|
543 |
+
patch_size=(pipe.transformer.config.patch_size_t, pipe.transformer.config.patch_size, pipe.transformer.config.patch_size),
|
544 |
+
in_chans=pipe.transformer.config.in_channels * 2,
|
545 |
+
embed_dim=pipe.transformer.config.num_attention_heads * pipe.transformer.config.attention_head_dim,
|
546 |
+
)
|
547 |
+
new_img_in = new_img_in.to(pipe.device, dtype=pipe.dtype)
|
548 |
+
new_img_in.proj.weight.zero_()
|
549 |
+
new_img_in.proj.weight[:, :initial_input_channels].copy_(pipe.transformer.x_embedder.proj.weight)
|
550 |
+
|
551 |
+
if pipe.transformer.x_embedder.proj.bias is not None:
|
552 |
+
new_img_in.proj.bias.copy_(pipe.transformer.x_embedder.proj.bias)
|
553 |
+
|
554 |
+
pipe.transformer.x_embedder = new_img_in
|
555 |
+
|
556 |
+
print("Loading lora...")
|
557 |
+
lora_state_dict = pipe.lora_state_dict(args.lora_path)
|
558 |
+
transformer_lora_state_dict = {f'{k.replace("transformer.", "")}': v for k, v in lora_state_dict.items() if k.startswith("transformer.") and "lora" in k}
|
559 |
+
pipe.load_lora_into_transformer(transformer_lora_state_dict, transformer=pipe.transformer, adapter_name="i2v", _pipeline=pipe)
|
560 |
+
pipe.set_adapters(["i2v"], adapter_weights=[1.0])
|
561 |
+
pipe.fuse_lora(components=["transformer"], lora_scale=1.0, adapter_names=["i2v"])
|
562 |
+
pipe.unload_lora_weights()
|
563 |
+
|
564 |
+
print("Loading images...")
|
565 |
+
cond_frame1 = load_image(args.image1)
|
566 |
+
cond_frame2 = load_image(args.image2)
|
567 |
+
|
568 |
+
cond_frame1 = resize_image_to_bucket(cond_frame1, bucket_reso=(args.width, args.height))
|
569 |
+
cond_frame2 = resize_image_to_bucket(cond_frame2, bucket_reso=(args.width, args.height))
|
570 |
+
|
571 |
+
cond_video = np.zeros(shape=(args.num_frames, args.height, args.width, 3))
|
572 |
+
|
573 |
+
# 20250305 pftq: Optional 3rd-5th frame, sadly doesn't work so easily, needs more code
|
574 |
+
cond_frame3 = None
|
575 |
+
cond_frame4 = None
|
576 |
+
cond_frame5 = None
|
577 |
+
|
578 |
+
if args.image3 != "":
|
579 |
+
cond_frame3 = load_image(args.image3)
|
580 |
+
cond_frame3 = resize_image_to_bucket(cond_frame3, bucket_reso=(args.width, args.height))
|
581 |
+
if args.image4 !="":
|
582 |
+
cond_frame4 = load_image(args.image4)
|
583 |
+
cond_frame4 = resize_image_to_bucket(cond_frame4, bucket_reso=(args.width, args.height))
|
584 |
+
if args.image5 !="":
|
585 |
+
cond_frame5 = load_image(args.image5)
|
586 |
+
cond_frame5 = resize_image_to_bucket(cond_frame5, bucket_reso=(args.width, args.height))
|
587 |
+
|
588 |
+
if args.image5 != "" and args.image4 != "" and args.image3 !="" and args.image2 !="":
|
589 |
+
cond_video[0] = np.array(cond_frame1)
|
590 |
+
cond_video[args.num_frames//4] = np.array(cond_frame2)
|
591 |
+
cond_video[(args.num_frames * 2 )//4] = np.array(cond_frame3)
|
592 |
+
cond_video[(args.num_frames * 3 )//4] = np.array(cond_frame4)
|
593 |
+
cond_video[args.num_frames -1] = np.array(cond_frame5)
|
594 |
+
elif args.image4 != "" and args.image3 !="" and args.image2 !="":
|
595 |
+
cond_video[0] = np.array(cond_frame1)
|
596 |
+
cond_video[args.num_frames//3] = np.array(cond_frame2)
|
597 |
+
cond_video[(args.num_frames * 2 )//3] = np.array(cond_frame3)
|
598 |
+
cond_video[args.num_frames -1] = np.array(cond_frame4)
|
599 |
+
elif args.image3 != "" and args.image2 !="":
|
600 |
+
cond_video[0] = np.array(cond_frame1)
|
601 |
+
cond_video[args.num_frames//2] = np.array(cond_frame2)
|
602 |
+
cond_video[args.num_frames -1] = np.array(cond_frame3)
|
603 |
+
else:
|
604 |
+
cond_video[0] = np.array(cond_frame1)
|
605 |
+
cond_video[args.num_frames -1] = np.array(cond_frame2)
|
606 |
+
|
607 |
+
cond_video = torch.from_numpy(cond_video.copy()).permute(0, 3, 1, 2)
|
608 |
+
cond_video = torch.stack([video_transforms(x) for x in cond_video], dim=0).unsqueeze(0)
|
609 |
+
|
610 |
+
with torch.no_grad():
|
611 |
+
image_or_video = cond_video.to(device="cuda", dtype=pipe.dtype)
|
612 |
+
image_or_video = image_or_video.permute(0, 2, 1, 3, 4).contiguous() # [B, F, C, H, W] -> [B, C, F, H, W]
|
613 |
+
cond_latents = pipe.vae.encode(image_or_video).latent_dist.sample()
|
614 |
+
cond_latents = cond_latents * pipe.vae.config.scaling_factor
|
615 |
+
cond_latents = cond_latents.to(dtype=pipe.dtype)
|
616 |
+
|
617 |
+
for idx in range(args.video_num): # 20250305 pftq: for loop for multiple videos per batch with varying seeds
|
618 |
+
|
619 |
+
if args.seed == -1 or idx > 0: # 20250305 pftq: seed argument ignored if asking for more than one video
|
620 |
+
random.seed(time.time())
|
621 |
+
args.seed = int(random.randrange(4294967294))
|
622 |
+
|
623 |
+
#20250223 pftq: More useful filename and higher customizable bitrate
|
624 |
+
from datetime import datetime
|
625 |
+
now = datetime.now()
|
626 |
+
formatted_time = now.strftime('%Y-%m-%d_%H-%M-%S')
|
627 |
+
video_out_file = formatted_time+f"_hunyuankeyframe_{args.width}-{args.num_frames}f_cfg-{args.cfg}_steps-{args.steps}_seed-{args.seed}_{args.prompt[:40].replace('/','')}_{idx}"
|
628 |
+
command_line = reconstruct_command_line(args, sys.argv) # 20250307: Store the full command-line used in the mp4 comment with quotes
|
629 |
+
#print(f"Command-line received:\n{command_line}")
|
630 |
+
|
631 |
+
print("Starting video generation #"+str(idx)+" for "+video_out_file)
|
632 |
+
video = call_pipe(
|
633 |
+
pipe,
|
634 |
+
prompt=args.prompt,
|
635 |
+
num_frames=args.num_frames,
|
636 |
+
num_inference_steps=args.steps,
|
637 |
+
image_latents=cond_latents,
|
638 |
+
width=args.width,
|
639 |
+
height=args.height,
|
640 |
+
guidance_scale=args.cfg,
|
641 |
+
generator=torch.Generator(device="cuda").manual_seed(args.seed),
|
642 |
+
).frames[0]
|
643 |
+
|
644 |
+
# 20250305 pftq: Color match with direct MKL and temporal smoothing
|
645 |
+
if args.color_match:
|
646 |
+
#save_video_with_quality(video, f"{video_out_file}_raw.mp4", args.fps, args.mbps)
|
647 |
+
print("Applying color matching to video...")
|
648 |
+
from color_matcher import ColorMatcher
|
649 |
+
from color_matcher.io_handler import load_img_file
|
650 |
+
from color_matcher.normalizer import Normalizer
|
651 |
+
|
652 |
+
# Load the reference image (image1)
|
653 |
+
ref_img = load_img_file(args.image1) # Original load
|
654 |
+
cm = ColorMatcher()
|
655 |
+
matched_video = []
|
656 |
+
|
657 |
+
for frame in video:
|
658 |
+
frame_rgb = np.array(frame) # Direct PIL to numpy
|
659 |
+
matched_frame = cm.transfer(src=frame_rgb, ref=ref_img, method='mkl')
|
660 |
+
matched_frame = Normalizer(matched_frame).uint8_norm()
|
661 |
+
matched_video.append(matched_frame)
|
662 |
+
|
663 |
+
video = matched_video
|
664 |
+
# END OF COLOR MATCHING
|
665 |
+
|
666 |
+
print("Saving "+video_out_file)
|
667 |
+
#export_to_video(final_video, "output.mp4", fps=24)
|
668 |
+
save_video_with_quality(video, f"{video_out_file}.mp4", args.fps, args.mbps, command_line)
|