Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -102,27 +102,31 @@ def resize_image_to_bucket(image: Union[Image.Image, np.ndarray], bucket_reso: T
|
|
102 |
|
103 |
@spaces.GPU(duration=120)
|
104 |
def generate_video(prompt: str, frame1: Image.Image, frame2: Image.Image, resolution: str, guidance_scale: float, num_frames: int, num_inference_steps: int) -> bytes:
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
width, height = map(int, resolution.split('x'))
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
cond_video = torch.
|
116 |
-
cond_video[0] = cond_frame1
|
117 |
-
cond_video[-1] = cond_frame2
|
118 |
-
|
119 |
with torch.no_grad():
|
120 |
-
image_or_video = cond_video.
|
|
|
121 |
cond_latents = pipe.vae.encode(image_or_video).latent_dist.sample()
|
122 |
cond_latents = cond_latents * pipe.vae.config.scaling_factor
|
123 |
cond_latents = cond_latents.to(dtype=pipe.dtype)
|
124 |
assert not torch.any(torch.isnan(cond_latents))
|
125 |
-
|
126 |
video = call_pipe(
|
127 |
pipe,
|
128 |
prompt=prompt,
|
@@ -134,13 +138,10 @@ def generate_video(prompt: str, frame1: Image.Image, frame2: Image.Image, resolu
|
|
134 |
guidance_scale=guidance_scale,
|
135 |
generator=torch.Generator(device="cuda").manual_seed(0),
|
136 |
).frames[0]
|
137 |
-
|
138 |
video_path = "output.mp4"
|
|
|
139 |
export_to_video(video, video_path, fps=24)
|
140 |
-
del cond_video # Manual deletion
|
141 |
-
del cond_frame1 # Manual deletion
|
142 |
-
del cond_frame2 # Manual deletion
|
143 |
-
del image_or_video # Manual deletion
|
144 |
torch.cuda.empty_cache()
|
145 |
return video_path
|
146 |
|
|
|
102 |
|
103 |
@spaces.GPU(duration=120)
|
104 |
def generate_video(prompt: str, frame1: Image.Image, frame2: Image.Image, resolution: str, guidance_scale: float, num_frames: int, num_inference_steps: int) -> bytes:
|
105 |
+
# Debugging print statements
|
106 |
+
print(f"Frame 1 Type: {type(frame1)}")
|
107 |
+
print(f"Frame 2 Type: {type(frame2)}")
|
108 |
+
print(f"Resolution: {resolution}")
|
109 |
+
|
110 |
+
# Parse resolution
|
111 |
width, height = map(int, resolution.split('x'))
|
112 |
+
|
113 |
+
# Load and preprocess frames
|
114 |
+
cond_frame1 = np.array(frame1)
|
115 |
+
cond_frame2 = np.array(frame2)
|
116 |
+
cond_frame1 = resize_image_to_bucket(cond_frame1, bucket_reso=(width, height))
|
117 |
+
cond_frame2 = resize_image_to_bucket(cond_frame2, bucket_reso=(width, height))
|
118 |
+
cond_video = np.zeros(shape=(num_frames, height, width, 3))
|
119 |
+
cond_video[0], cond_video[-1] = cond_frame1, cond_frame2
|
120 |
+
cond_video = torch.from_numpy(cond_video.copy()).permute(0, 3, 1, 2)
|
121 |
+
cond_video = torch.stack([video_transforms(x) for x in cond_video], dim=0).unsqueeze(0)
|
|
|
|
|
|
|
122 |
with torch.no_grad():
|
123 |
+
image_or_video = cond_video.to(device="cuda", dtype=pipe.dtype)
|
124 |
+
image_or_video = image_or_video.permute(0, 2, 1, 3, 4).contiguous() # [B, F, C, H, W] -> [B, C, F, H, W]
|
125 |
cond_latents = pipe.vae.encode(image_or_video).latent_dist.sample()
|
126 |
cond_latents = cond_latents * pipe.vae.config.scaling_factor
|
127 |
cond_latents = cond_latents.to(dtype=pipe.dtype)
|
128 |
assert not torch.any(torch.isnan(cond_latents))
|
129 |
+
# Generate video
|
130 |
video = call_pipe(
|
131 |
pipe,
|
132 |
prompt=prompt,
|
|
|
138 |
guidance_scale=guidance_scale,
|
139 |
generator=torch.Generator(device="cuda").manual_seed(0),
|
140 |
).frames[0]
|
141 |
+
# Export to video
|
142 |
video_path = "output.mp4"
|
143 |
+
# video_bytes = io.BytesIO()
|
144 |
export_to_video(video, video_path, fps=24)
|
|
|
|
|
|
|
|
|
145 |
torch.cuda.empty_cache()
|
146 |
return video_path
|
147 |
|