Spaces:
Sleeping
Sleeping
File size: 2,371 Bytes
893b350 2ac354d 642b87c 893b350 63f81dc 586ff4c 893b350 8714fcf 893b350 586ff4c 2ac354d 893b350 822c6d6 642b87c 893b350 586ff4c 893b350 2ac354d 893b350 642b87c 893b350 3506310 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
import os
import json
import gradio as gr
from llama_cpp import Llama
# Get environment variables
model_id = os.getenv('MODEL')
quant = os.getenv('QUANT')
chat_template = os.getenv('CHAT_TEMPLATE')
# Interface variables
model_name = model_id.split('/')[-1]
title = f"🇩🇪 {model_name}"
description = f"Chat with <a href=\"https://huggingface.co/{model_id}\">{model_name}</a> in GGUF format ({quant})!"
print("find gguf file")
import os
from pathlib import Path
# Get the Hugging Face cache directory
hf_cache_dir = os.getenv("HF_HOME", str(Path.home() / ".cache" / "huggingface"))
# List all files in the Hugging Face cache directory
for root, dirs, files in os.walk(hf_cache_dir):
for file in files:
print(os.path.join(root, file))
print("loading model")
# Initialize the LLM
llm = Llama(model_path="/home/user/.cache/huggingface/hub/models--LSX-UniWue--LLaMmlein_1B_alternative_formats/snapshots/7d97b69ae6910b5f317be2dbd5b4820d848c66b4/LLaMmlein_1B_chat_selected.gguf",
n_ctx=32768,
n_threads=2,
chat_format=chat_template)
# Function for streaming chat completions
def chat_stream_completion(message, history):
#messages_prompts = [{"role": "system", "content": system_prompt}]
messages_prompts = []
for human, assistant in history:
messages_prompts.append({"role": "user", "content": human})
messages_prompts.append({"role": "assistant", "content": assistant})
messages_prompts.append({"role": "user", "content": message})
response = llm.create_chat_completion(
messages=messages_prompts,
stream=True,
stop=["<|im_end|>"]
)
message_repl = ""
for chunk in response:
if len(chunk['choices'][0]["delta"]) != 0 and "content" in chunk['choices'][0]["delta"]:
message_repl = message_repl + chunk['choices'][0]["delta"]["content"]
yield message_repl
print("starting gradio")
# Gradio chat interface
gr.ChatInterface(
fn=chat_stream_completion,
title=title,
description=description,
#additional_inputs=[gr.Textbox("Du bist ein hilfreicher Assistent.")],
#additional_inputs_accordion="📝 System prompt",
examples=[
["Was ist ein Large Language Model?"],
["Was ist 9+2-1?"],
["Schreibe Python code um die Fibonacci-Reihenfolge auszugeben."]
]
).queue().launch() |