import os import json import gradio as gr from llama_cpp import Llama import spaces # Get environment variables model_id = os.getenv('MODEL') quant = os.getenv('QUANT') chat_template = os.getenv('CHAT_TEMPLATE') # Interface variables model_name = model_id.split('/')[-1] title = f"🇩🇪 {model_name}" description = f"Chat with {model_name} in GGUF format ({quant})!" print("find gguf file") import os from pathlib import Path # Get the Hugging Face cache directory hf_cache_dir = os.getenv("HF_HOME", str(Path.home() / ".cache" / "huggingface")) # List all files in the Hugging Face cache directory for root, dirs, files in os.walk(hf_cache_dir): for file in files: print(os.path.join(root, file)) print("loading model") # Initialize the LLM llm = Llama(model_path="/home/user/.cache/huggingface/hub/models--LSX-UniWue--LLaMmlein_1B_alternative_formats/snapshots/7d97b69ae6910b5f317be2dbd5b4820d848c66b4/LLaMmlein_1B_chat_selected.gguf", n_ctx=32768, n_threads=2, chat_format=chat_template) # Function for streaming chat completions @spaces.GPU def chat_stream_completion(message, history): #messages_prompts = [{"role": "system", "content": system_prompt}] messages_prompts = [] for human, assistant in history: messages_prompts.append({"role": "user", "content": human}) messages_prompts.append({"role": "assistant", "content": assistant}) messages_prompts.append({"role": "user", "content": message}) response = llm.create_chat_completion( messages=messages_prompts, repeat_penalty=1.1, #temperature=0, stream=True, stop=["<|im_end|>"] ) message_repl = "" for chunk in response: if len(chunk['choices'][0]["delta"]) != 0 and "content" in chunk['choices'][0]["delta"]: message_repl = message_repl + chunk['choices'][0]["delta"]["content"] yield message_repl print("starting gradio") # Gradio chat interface gr.ChatInterface( fn=chat_stream_completion, title=title, description=description, #additional_inputs=[gr.Textbox("Du bist ein hilfreicher Assistent.")], #additional_inputs_accordion="📝 System prompt", examples=[ ["Was weißt du über Würzburg?"], ] ).queue().launch()