File size: 21,417 Bytes
5fe7310
 
 
 
 
 
 
bb7e021
5fe7310
 
bb7e021
 
 
 
5fe7310
bb7e021
 
 
 
 
 
 
 
5fe7310
bb7e021
 
 
 
5fe7310
 
bb7e021
 
 
 
e84917b
5fe7310
bb7e021
 
 
 
5fe7310
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb7e021
 
 
5fe7310
 
 
 
 
 
 
 
 
 
bb7e021
 
 
 
 
 
8a16430
bb7e021
 
 
 
5fe7310
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb7e021
 
 
5fe7310
bb7e021
 
5fe7310
 
 
 
 
 
bb7e021
 
 
 
 
5fe7310
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bce015a
 
bb7e021
 
 
 
 
bce015a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb7e021
bce015a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fe7310
bce015a
5fe7310
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb7e021
 
5fe7310
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40ae5e2
 
5fe7310
 
 
 
 
 
 
 
 
40ae5e2
5fe7310
 
 
 
 
 
 
 
 
 
 
40ae5e2
5fe7310
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
import os
import gradio as gr
import subprocess
import spaces
import ctypes
import shlex
import torch
import argparse
print(f'gradio version: {gr.__version__}')

# Add command line argument parsing
parser = argparse.ArgumentParser(description='DiMeR Demo')
parser.add_argument('--ui_only', action='store_true', help='Only load the UI interface, do not initialize models (for UI debugging)')
args = parser.parse_args()

UI_ONLY_MODE = args.ui_only
print(f"UI_ONLY_MODE: {UI_ONLY_MODE}")

if not UI_ONLY_MODE:
    subprocess.run(
        shlex.split(
            "pip install ./custom_diffusers --force-reinstall --no-deps"
        )
    )
    subprocess.run(
        shlex.split(
            "pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py310_cu121_pyt240/download.html"
        )
    )

    subprocess.run(
        shlex.split(
            "pip install ./extension/nvdiffrast-0.3.1+torch-py3-none-any.whl --force-reinstall --no-deps"
        )
    )

    subprocess.run(
        shlex.split(
            "pip install ./extension/renderutils_plugin-0.1.0-cp310-cp310-linux_x86_64.whl --force-reinstall --no-deps"
        )
    )

# Status variables for tracking if detailed prompt and image have been generated
generated_detailed_prompt = False
generated_image = False

def install_cuda_toolkit():
    CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.1.0/local_installers/cuda_12.1.0_530.30.02_linux.run"
    CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
    subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
    subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
    subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])

    os.environ["CUDA_HOME"] = "/usr/local/cuda"
    os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
    os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
        os.environ["CUDA_HOME"],
        "" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
    )
    # Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range
    os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"
    print("==> finished installation")

# Only execute CUDA installation in non-UI debug mode
if not UI_ONLY_MODE:
    install_cuda_toolkit()

@spaces.GPU
def check_gpu():
    if "CUDA_VISIBLE_DEVICES" in os.environ:
        del os.environ["CUDA_VISIBLE_DEVICES"]
    os.environ['CUDA_HOME'] = '/usr/local/cuda-12.1'
    os.environ['PATH'] += ':/usr/local/cuda-12.1/bin'
    os.environ['LD_LIBRARY_PATH'] = "/usr/local/cuda-12.1/lib64:" + os.environ.get('LD_LIBRARY_PATH', '')
    subprocess.run(['nvidia-smi'])  # Test if CUDA is available
    print(f"torch.cuda.is_available:{torch.cuda.is_available()}")
    print("Device count:", torch.cuda.device_count()) 

    # test nvdiffrast
    import nvdiffrast.torch as dr
    dr.RasterizeCudaContext(device="cuda:0")
    print("nvdiffrast initialized successfully")       
    

# Only check GPU in non-UI debug mode
if not UI_ONLY_MODE:
    check_gpu()


import base64
import re
import sys

sys.path.append(os.path.abspath(os.path.join(__file__, '../')))
if 'OMP_NUM_THREADS' not in os.environ:
    os.environ['OMP_NUM_THREADS'] = '32'

import shutil
import json
import requests
import shutil
import threading
from PIL import Image
import time
import trimesh

import random
import time
import numpy as np

# Only import video rendering module and initialize models in non-UI debug mode
if not UI_ONLY_MODE:
    from video_render import render_video_from_obj

    access_token = os.getenv("HUGGINGFACE_TOKEN")
    from pipeline.kiss3d_wrapper import init_wrapper_from_config, run_text_to_3d, run_image_to_3d, image2mesh_preprocess, image2mesh_main

# Add logo file path and hyperlinks
LOGO_PATH = "app_assets/logo_temp_.png"  # Update this to the actual path of your logo
ARXIV_LINK = "https://arxiv.org/pdf/2504.17670"
GITHUB_LINK = "https://github.com/lutao2021/DiMeR"

# Only initialize models in non-UI debug mode
if not UI_ONLY_MODE:
    k3d_wrapper = init_wrapper_from_config('./pipeline/pipeline_config/default.yaml')
    from models.ISOMER.scripts.utils import fix_vert_color_glb
    torch.backends.cuda.matmul.allow_tf32 = True

TEMP_MESH_ADDRESS=''

mesh_cache = None
preprocessed_input_image = None

def save_cached_mesh():
    global mesh_cache
    print('save_cached_mesh() called')
    return mesh_cache

def save_py3dmesh_with_trimesh_fast(meshes, save_glb_path=TEMP_MESH_ADDRESS, apply_sRGB_to_LinearRGB=True):
    from pytorch3d.structures import Meshes
    import trimesh

    # convert from pytorch3d meshes to trimesh mesh
    vertices = meshes.verts_packed().cpu().float().numpy()
    triangles = meshes.faces_packed().cpu().long().numpy()
    np_color = meshes.textures.verts_features_packed().cpu().float().numpy()
    if save_glb_path.endswith(".glb"):
        # rotate 180 along +Y
        vertices[:, [0, 2]] = -vertices[:, [0, 2]]

    def srgb_to_linear(c_srgb):
        c_linear = np.where(c_srgb <= 0.04045, c_srgb / 12.92, ((c_srgb + 0.055) / 1.055) ** 2.4)
        return c_linear.clip(0, 1.)
    if apply_sRGB_to_LinearRGB:
        np_color = srgb_to_linear(np_color)
    assert vertices.shape[0] == np_color.shape[0]
    assert np_color.shape[1] == 3
    assert 0 <= np_color.min() and np_color.max() <= 1, f"min={np_color.min()}, max={np_color.max()}"
    mesh = trimesh.Trimesh(vertices=vertices, faces=triangles, vertex_colors=np_color)
    mesh.remove_unreferenced_vertices()
    # save mesh
    mesh.export(save_glb_path)
    if save_glb_path.endswith(".glb"):
        fix_vert_color_glb(save_glb_path)
    print(f"saving to {save_glb_path}")

@spaces.GPU
def text_to_detailed(prompt, seed=None):
    # test nvdiffrast
    import nvdiffrast.torch as dr
    dr.RasterizeCudaContext(device="cuda:0")
    print("nvdiffrast initialized successfully")

    print(f"torch.cuda.is_available():{torch.cuda.is_available()}")
    # print(f"Before text_to_detailed: {torch.cuda.memory_allocated() / 1024**3} GB")
    return k3d_wrapper.get_detailed_prompt(prompt, seed)

@spaces.GPU(duration=120)
def text_to_image(prompt, seed=None, strength=1.0,lora_scale=1.0, num_inference_steps=18, redux_hparam=None, init_image=None, **kwargs):
    # subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True)
    # print(f"Before text_to_image: {torch.cuda.memory_allocated() / 1024**3} GB")
    # k3d_wrapper.flux_pipeline.enable_xformers_memory_efficient_attention()
    k3d_wrapper.renew_uuid()
    init_image = None
    # if init_image_path is not None:
    #     init_image = Image.open(init_image_path)
    subprocess.run(['nvidia-smi'])  # Test if CUDA is available
    with torch.no_grad():
        result = k3d_wrapper.generate_3d_bundle_image_text( 
                                    prompt,
                                    image=init_image, 
                                    strength=strength,
                                    lora_scale=lora_scale,
                                    num_inference_steps=num_inference_steps,
                                    seed=int(seed) if seed is not None else None,
                                    redux_hparam=redux_hparam,
                                    save_intermediate_results=True,
                                    **kwargs)
    return result[-1]

@spaces.GPU(duration=120)
def image2mesh_preprocess_(input_image_, seed, use_mv_rgb=True):
    global preprocessed_input_image

    seed = int(seed) if seed is not None else None

    # TODO: delete this later
    # k3d_wrapper.del_llm_model()
    
    input_image_save_path, reference_save_path, caption = image2mesh_preprocess(k3d_wrapper, input_image_, seed, use_mv_rgb)

    preprocessed_input_image = Image.open(input_image_save_path)
    return reference_save_path, caption


@spaces.GPU(duration=120)
def image2mesh_main_(reference_3d_bundle_image, caption, seed, strength1=0.5, strength2=0.95, enable_redux=True, use_controlnet=True, if_video=True):
    subprocess.run(['nvidia-smi'])  
    global mesh_cache 
    seed = int(seed) if seed is not None else None


    # TODO: delete this later
    # k3d_wrapper.del_llm_model()

    input_image = preprocessed_input_image

    reference_3d_bundle_image = torch.tensor(reference_3d_bundle_image).permute(2,0,1)/255

    gen_save_path, recon_mesh_path = image2mesh_main(k3d_wrapper, input_image, reference_3d_bundle_image, caption=caption, seed=seed, strength1=strength1, strength2=strength2, enable_redux=enable_redux, use_controlnet=use_controlnet)
    mesh_cache = recon_mesh_path


    if if_video:
        video_path = recon_mesh_path.replace('.obj','.mp4').replace('.glb','.mp4')
        render_video_from_obj(recon_mesh_path, video_path)
        print(f"After bundle_image_to_mesh: {torch.cuda.memory_allocated() / 1024**3} GB")
        return gen_save_path, video_path, mesh_cache
    else:
        return gen_save_path, recon_mesh_path, mesh_cache
    # return gen_save_path, recon_mesh_path

@spaces.GPU(duration=120)
def bundle_image_to_mesh(
        gen_3d_bundle_image, 
        camera_radius=3.5,
        lrm_radius = 3.5,
        isomer_radius = 4.2,
        reconstruction_stage1_steps = 0,
        reconstruction_stage2_steps = 50,
        save_intermediate_results=False
    ):
    global mesh_cache
    print(f"Before bundle_image_to_mesh: {torch.cuda.memory_allocated() / 1024**3} GB")
    k3d_wrapper.recon_model.init_flexicubes_geometry("cuda:0", fovy=50.0)
    print(f"init_flexicubes_geometry done")
    # TODO: delete this later
    k3d_wrapper.del_llm_model()

    print(f"Before bundle_image_to_mesh after deleting llm model: {torch.cuda.memory_allocated() / 1024**3} GB")

    gen_3d_bundle_image = torch.tensor(gen_3d_bundle_image).permute(2,0,1)/255
    
    recon_mesh_path = k3d_wrapper.reconstruct_3d_bundle_image(gen_3d_bundle_image, camera_radius=camera_radius, lrm_render_radius=lrm_radius, isomer_radius=isomer_radius, save_intermediate_results=save_intermediate_results, reconstruction_stage1_steps=int(reconstruction_stage1_steps), reconstruction_stage2_steps=int(reconstruction_stage2_steps))
    mesh_cache = recon_mesh_path
    
    print(f"Mesh generated at: {mesh_cache}")
    
    # Check if file exists
    if not os.path.exists(mesh_cache):
        print(f"Warning: Generated mesh file does not exist: {mesh_cache}")
        return None, mesh_cache
        
    return recon_mesh_path, mesh_cache

# _HEADER_=f"""
# <img src="{LOGO_PATH}">
#     <h2><b>Official 🤗 Gradio Demo</b></h2>
#     <h2><b>Kiss3DGen: Repurposing Image Diffusion Models for 3D Asset Generation</b></h2>
#     <h2>Try our demo:Please click the buttons in sequence. Feel free to redo some steps multiple times until you get a </h2>



# [![arXiv](https://img.shields.io/badge/arXiv-Link-red)]({ARXIV_LINK})  [![GitHub](https://img.shields.io/badge/GitHub-Repo-blue)]({GITHUB_LINK})

# """

_STAR_ = f"""
<h2>If DiMeR is helpful, please help to ⭐ the <a href={GITHUB_LINK} target='_blank'>Github Repo</a>. Sincerely Thanks!</h2>
"""

_CITE_ = r"""

<h2>📝 Citation</h2>

<h2>If you find our work useful for your research or applications, please cite using the following papers:</h2>

```bibtex
@article{jiang2025dimer,
  title={DiMeR: Disentangled Mesh Reconstruction Model},
  author={Jiang, Lutao and Lin, Jiantao and Chen, Kanghao and Ge, Wenhang and Yang, Xin and Jiang, Yifan and Lyu, Yuanhuiyi and Zheng, Xu and Chen, Yingcong},
  journal={arXiv preprint arXiv:2504.17670},
  year={2025}
}

@article{lin2025kiss3dgenrepurposingimagediffusion,
  title={Kiss3DGen: Repurposing Image Diffusion Models for 3D Asset Generation},
  author={Jiantao Lin, Xin Yang, Meixi Chen, Yingjie Xu, Dongyu Yan, Leyi Wu, Xinli Xu, Lie XU, Shunsi Zhang, Ying-Cong Chen},
  journal={arXiv preprint arXiv:2503.01370},
  year={2025}
}

```

📋 **License**

Apache-2.0 LICENSE. Please refer to the [LICENSE file](https://huggingface.co/spaces/TencentARC/InstantMesh/blob/main/LICENSE) for details.

📧 **Contact**

If you have any questions, feel free to open a discussion or contact us at <b>[email protected]</b>.
"""

def image_to_base64(image_path):
    """Converts an image file to a base64-encoded string."""
    with open(image_path, "rb") as img_file:
        return base64.b64encode(img_file.read()).decode('utf-8')

# def main():

if not UI_ONLY_MODE:
    torch.set_grad_enabled(False)

# Convert the logo image to base64
logo_base64 = image_to_base64(LOGO_PATH)
# with gr.Blocks() as demo:
with gr.Blocks(css="""


    .orange-button {
        background-color: #FF8C00 !important;
        border-color: #FF8C00 !important;
        color: black !important;
    }


    .gradio-container {
        max-width: 1000px;
        margin: auto;
        width: 100%;
    }
    #center-align-column {
        display: flex;
        justify-content: center;
        align-items: center;
    }
    #right-align-column {
        display: flex;
        justify-content: flex-end;
        align-items: center;
    }
    h1 {text-align: center;}
    h2 {text-align: center;}
    h3 {text-align: center;}
    p {text-align: center;}
    img {text-align: right;}
    .right {
    display: block;
    margin-left: auto;
    }
    .center {
    display: block;
    margin-left: auto;
    margin-right: auto;
    width: 50%;
    }

    #content-container {
        max-width: 1200px;
        margin: 0 auto;
    }



""",elem_id="col-container") as demo:
    # Header Section
    # gr.Image(value=LOGO_PATH, width=64, height=64)
    # gr.Markdown(_HEADER_)
    with gr.Row(elem_id="content-container"):

        with gr.Column(scale=7, elem_id="center-align-column"):
            gr.Markdown(f"""
            # Official 🤗 Gradio Demo
            # DiMeR: Disentangled Mesh Reconstruction Model""")
            
            gr.HTML(f"""
            <div style="display: flex; justify-content: center; align-items: center; gap: 10px;">
                <a href="{ARXIV_LINK}" target="_blank">
                    <img src="https://img.shields.io/badge/arXiv-Link-red" alt="arXiv">
                </a>
                <a href="{GITHUB_LINK}" target="_blank">
                    <img src="https://img.shields.io/badge/GitHub-Repo-blue" alt="GitHub">
                </a>
            </div>
            
            """)

    gr.Markdown(_STAR_)

    # Tabs Section
    with gr.Tabs() as main_tabs:
        with gr.TabItem('Text-to-3D', id='tab_text_to_3d'):
            gr.Markdown("Click the button 'One-click Generation' or click the buttons one by one.")
            with gr.Row():
                with gr.Column(scale=1):
                    prompt = gr.Textbox(value="", label="Input Prompt", lines=4, placeholder="input prompt here, english or chinese")
                    
                    # Modify the Examples section to display horizontally
                    gr.Examples(
                        examples=[
                            ["A cat"],
                            ["A person wearing a virtual reality headset, sitting position, bent legs, clasped hands."],
                            ["A battle mech in a mix of red, blue, and black color, with a cannon on the head."],
                            ["骷髅头, 邪恶的"],
                        ],
                        inputs=[prompt],
                        label="Example Prompts",
                        examples_per_page=4  # Force all examples to be on a single row
                    )
                    
                    with gr.Accordion("Advanced Parameters", open=False):
                        seed1 = gr.Number(value=666, label="Seed")
                        
                    btn_one_click_generate = gr.Button("One-click Generation", elem_id="one-click-generate-btn", elem_classes=["orange-button"])
                    
                    btn_text2detailed = gr.Button("1. Refine to detailed prompt")
                    
                    gr.Markdown("---")
                    
                    detailed_prompt = gr.Textbox(value="", label="Detailed Prompt", placeholder="detailed prompt will be generated here base on your input prompt. You can also edit this prompt", lines=10, interactive=True)

                    with gr.Accordion("Advanced Parameters", open=False):
                        with gr.Row():
                            img_gen_seed = gr.Number(value=666, label="Image Generation Seed")
                            num_inference_steps = gr.Slider(minimum=1, maximum=50, value=18, step=1, label="Inference Steps")
                        with gr.Row():
                            strength = gr.Slider(minimum=0.0, maximum=1.0, value=1.0, step=0.05, label="Strength")
                            lora_scale = gr.Slider(minimum=0.0, maximum=2.0, value=1.0, step=0.05, label="LoRA Scale")
                            
                    btn_text2img = gr.Button("2. Generate Images")
                    

                with gr.Column(scale=1):

                    output_image1 = gr.Image(label="Generated Image", interactive=False, width=800, height=350, container=True)
                    
                    with gr.Accordion("Advanced Parameters", open=False):
                        camera_radius = gr.Slider(minimum=3.0, maximum=6.0, value=3.5, step=0.01, label="Camera Radius")
                    
                    btn_gen_mesh = gr.Button("3. Generate Mesh")

                    # Textured mesh view
                    output_mesh_textured = gr.Model3D(label="3D Mesh Viewer", interactive=False, height=300)
                    download_1 = gr.DownloadButton(label="Download Mesh", interactive=False)
                    

        with gr.TabItem('Image-to-3D (coming soon)', id='tab_image_to_3d'):
            gr.Markdown("## Coming Soon")
            
        with gr.TabItem('Sparse-view-to-3D (coming soon)', id='tab_sparse_view_to_3d'):
            gr.Markdown("## Coming Soon")


    # Button Click Events
    # Text2
    btn_text2detailed.click(fn=text_to_detailed, inputs=[prompt, seed1], outputs=detailed_prompt)
    btn_text2img.click(fn=text_to_image, inputs=[detailed_prompt, img_gen_seed, strength, lora_scale, num_inference_steps], outputs=output_image1)
    
    # Split the mesh generation and video rendering steps
    btn_gen_mesh.click(fn=bundle_image_to_mesh, inputs=[output_image1, camera_radius], outputs=[output_mesh_textured, download_1]).then(
        lambda: gr.Button(interactive=True),
        outputs=[download_1],
    )
    
    # Define a helper function for video rendering and correctly returning the video path
    # def render_and_return_video(mesh_path):
    #     if not mesh_path or not os.path.exists(mesh_path):
    #         print(f"Warning: Mesh file doesn't exist: {mesh_path}")
    #         return None
            
    #     video_path = mesh_path.replace('.obj','.mp4').replace('.glb','.mp4')
    #     print(f"Rendering video to: {video_path}")
    #     try:
    #         render_video_from_obj(mesh_path, video_path)
    #         print(f"Video successfully rendered to: {video_path}")
    #         if os.path.exists(video_path):
    #             return video_path
    #         else:
    #             print(f"Warning: Video file was not created: {video_path}")
    #             return None
    #     except Exception as e:
    #         print(f"Error during video rendering: {e}")
    #         return None
    
    # Add separate button for video rendering
    # btn_render_video.click(fn=render_and_return_video, 
    #                       inputs=download_1, 
    #                       outputs=output_video1)

    # Add a new function for one-click generation
    def one_click_generate(input_prompt, seed):
        return input_prompt, seed
    
    # Define functions for sequential execution steps
    def sequential_step1(input_prompt, seed):
        # Step 1: Generate detailed prompt
        detailed = text_to_detailed(input_prompt, seed)
        return detailed
    
    def sequential_step2(detailed, seed):
        # Step 2: Generate image
        image = text_to_image(detailed, seed, 1.0, 1.0, 18)
        return image
    
    def sequential_step3(image):
        # Step 3: Generate 3D mesh
        geometry_mesh_path, textured_mesh_path, mesh_path = bundle_image_to_mesh(image)
        return geometry_mesh_path, textured_mesh_path, mesh_path
    
    def enable_download_button():
        return gr.Button(interactive=True)
        
    # Modify one-click generation button's click event using chained .then() calls
    btn_one_click_generate.click(
        fn=one_click_generate, 
        inputs=[prompt, seed1], 
        outputs=[prompt, img_gen_seed]
    ).then(
        fn=sequential_step1,
        inputs=[prompt, img_gen_seed],
        outputs=detailed_prompt
    ).then(
        fn=sequential_step2,
        inputs=[detailed_prompt, img_gen_seed],
        outputs=output_image1
    ).then(
        fn=sequential_step3,
        inputs=output_image1,
        outputs=[output_mesh_textured, download_1]
    ).then(
        fn=enable_download_button,
        outputs=download_1
    )

    with gr.Row():
        pass
    with gr.Row():
        gr.Markdown(_CITE_)

# Modify launch parameters to ensure background processing can continue
demo.launch()


# if __name__ == "__main__":
#     main()