File size: 19,119 Bytes
4157d39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
# The kiss3d pipeline wrapper for inference
import os
import numpy as np
import torch
import yaml
import uuid
from typing import Union, Any, Dict
from einops import rearrange
from PIL import Image
from pipeline.utils import logger, TMP_DIR, OUT_DIR
from pipeline.utils import lrm_reconstruct, isomer_reconstruct
import torch
import torchvision
# for reconstruction model
from omegaconf import OmegaConf
from models.lrm.utils.train_util import instantiate_from_config
from models.lrm.utils.render_utils import rotate_x, rotate_y
from utils.tool import get_background
# for florence2
from transformers import AutoProcessor, AutoModelForCausalLM
from diffusers import FluxPipeline, FluxControlNetImg2ImgPipeline, FluxImg2ImgPipeline, DiffusionPipeline, EulerAncestralDiscreteScheduler
from diffusers.models.controlnet_flux import FluxControlNetModel, FluxMultiControlNetModel
def init_wrapper_from_config(config_path):
with open(config_path, 'r') as config_file:
config_ = yaml.load(config_file, yaml.FullLoader)
# init flux_pipeline
logger.info('==> Loading Flux model ...')
flux_device = config_['flux'].get('device', 'cpu')
flux_base_model_pth = config_['flux'].get('base_model', None)
flux_controlnet_pth = config_['flux'].get('controlnet', None)
flux_lora_pth = config_['flux'].get('lora', None)
# load flux model and controlnet
if flux_controlnet_pth is not None:
flux_controlnet = FluxControlNetModel.from_pretrained(flux_controlnet_pth)
flux_pipe = FluxControlNetImg2ImgPipeline.from_pretrained(flux_base_model_pth, controlnet=[flux_controlnet], \
torch_dtype=torch.bfloat16)
else:
flux_pipe = FluxImg2ImgPipeline(flux_base_model_pth, torch_dtype=torch.bfloat16)
# load lora weights
flux_pipe.load_lora_weights(flux_lora_pth)
flux_pipe.to(device=flux_device, dtype=torch.bfloat16)
# TODO: load redux model
# FluxPriorReduxPipeline.from_pretrained()
# TODO: load pulid model
# init multiview model
logger.info('==> Loading multiview diffusion model ...')
multiview_device = config_['multiview'].get('device', 'cpu')
multiview_pipeline = DiffusionPipeline.from_pretrained(
config_['multiview']['base_model'],
custom_pipeline=config_['multiview']['custom_pipeline'],
torch_dtype=torch.float16,
)
multiview_pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
multiview_pipeline.scheduler.config, timestep_spacing='trailing'
)
unet_ckpt_path = config_['multiview'].get('unet', None)
if unet_ckpt_path is not None:
state_dict = torch.load(unet_ckpt_path, map_location='cpu')['state_dict']
state_dict = {k[10:]: v for k, v in state_dict.items() if k.startswith('unet.unet.')}
multiview_pipeline.unet.load_state_dict(state_dict, strict=True)
multiview_pipeline.to(multiview_device)
# load caption model
logger.info('==> Loading caption model ...')
caption_device = config_['caption'].get('device', 'cpu')
caption_model = AutoModelForCausalLM.from_pretrained(config_['caption']['base_model'], \
torch_dtype=torch.bfloat16, trust_remote_code=True).to(caption_device)
caption_processor = AutoProcessor.from_pretrained(config_['caption']['base_model'], trust_remote_code=True)
# load reconstruction model
logger.info('==> Loading reconstruction model ...')
recon_device = config_['reconstruction'].get('device', 'cpu')
recon_model_config = OmegaConf.load(config_['reconstruction']['model_config'])
recon_model = instantiate_from_config(recon_model_config.model_config)
# load recon model checkpoint
state_dict = torch.load(config_['reconstruction']['base_model'], map_location='cpu')['state_dict']
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.')}
recon_model.load_state_dict(state_dict, strict=True)
recon_model.to(recon_device)
recon_model.init_flexicubes_geometry(recon_device, fovy=50.0)
recon_model.eval()
return kiss3d_wrapper(
config = config_,
flux_pipeline = flux_pipe,
multiview_pipeline = multiview_pipeline,
caption_processor = caption_processor,
caption_model = caption_model,
reconstruction_model_config = recon_model_config,
reconstruction_model = recon_model,
)
class kiss3d_wrapper(object):
def __init__(self,
config: Dict,
flux_pipeline: Union[FluxPipeline, FluxControlNetImg2ImgPipeline],
multiview_pipeline: DiffusionPipeline,
caption_processor: AutoProcessor,
caption_model: AutoModelForCausalLM,
reconstruction_model_config: Any,
reconstruction_model: Any,
):
self.config = config
self.flux_pipeline = flux_pipeline
self.multiview_pipeline = multiview_pipeline
self.caption_model = caption_model
self.caption_processor = caption_processor
self.recon_model_config = reconstruction_model_config
self.recon_model = reconstruction_model
self.renew_uuid()
def renew_uuid(self):
self.uuid = uuid.uuid4()
def context(self):
if self.config['use_zero_gpu']:
import spaces
return spaces.GPU()
else:
return torch.no_grad()
def get_image_caption(self, image):
"""
image: PIL image or path of PIL image
"""
torch_dtype = torch.bfloat16
caption_device = self.config['caption'].get('device', 'cpu')
if isinstance(image, str): # If image is a file path
image = Image.open(image).convert("RGB")
elif isinstance(image, Image):
image = image.convert("RGB")
else:
raise NotImplementedError('unexpected image type')
prompt = "<MORE_DETAILED_CAPTION>"
inputs = self.caption_processor(text=prompt, images=image, return_tensors="pt").to(caption_device, torch_dtype)
generated_ids = self.caption_model.generate(
input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3
)
generated_text = self.caption_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = self.caption_processor.post_process_generation(
generated_text, task=prompt, image_size=(image.width, image.height)
)
caption_text = parsed_answer["<MORE_DETAILED_CAPTION>"].replace("The image is ", "")
return caption_text
def generate_multiview(self, image):
with self.context():
mv_image = self.multiview_pipeline(image,
num_inference_steps=self.config['multiview']['num_inference_steps'],
width=512*2, height=512*2).images[0]
return mv_image
def reconstruct_from_multiview(self, mv_image):
"""
mv_image: PIL.Image
"""
recon_device = self.config['reconstruction'].get('device', 'cpu')
rgb_multi_view = np.asarray(mv_image, dtype=np.float32) / 255.0
rgb_multi_view = torch.from_numpy(rgb_multi_view).squeeze(0).permute(2, 0, 1).contiguous().float() # (3, 1024, 2048)
rgb_multi_view = rearrange(rgb_multi_view, 'c (n h) (m w) -> (n m) c h w', n=2, m=2).unsqueeze(0).to(recon_device)
with self.context():
vertices, faces, lrm_multi_view_normals, lrm_multi_view_rgb, lrm_multi_view_albedo = \
lrm_reconstruct(self.recon_model, self.recon_model_config.infer_config,
rgb_multi_view, name=self.uuid)
return vertices, faces, lrm_multi_view_normals, lrm_multi_view_rgb, lrm_multi_view_albedo
def generate_reference_3D_bundle_image_zero123(self, image, save_intermediate_results=True):
"""
input: image, PIL.Image
return: ref_3D_bundle_image, Tensor of shape (1, 3, 1024, 2048)
"""
mv_image = self.generate_multiview(image)
if save_intermediate_results:
mv_image.save(os.path.join(TMP_DIR, f'{self.uuid}_mv_image.png'))
vertices, faces, lrm_multi_view_normals, lrm_multi_view_rgb, lrm_multi_view_albedo = self.reconstruct_from_multiview(mv_image)
ref_3D_bundle_image = torchvision.utils.make_grid(torch.cat([lrm_multi_view_rgb.cpu(), (lrm_multi_view_normals.cpu() + 1) / 2], dim=0), nrow=4, padding=0).unsqueeze(0) # range [0, 1]
if save_intermediate_results:
save_path = os.path.join(TMP_DIR, f'{self.uuid}_ref_3d_bundle_image.png')
torchvision.utils.save_image(ref_3D_bundle_image, save_path)
logger.info(f"Save reference 3D bundle image to {save_path}")
return ref_3D_bundle_image, save_path
return ref_3D_bundle_image
def generate_3d_bundle_image_controlnet(self,
prompt,
image=None,
strength=1.0,
control_image=[],
control_mode=[],
control_guidance_start=None,
control_guidance_end=None,
controlnet_conditioning_scale=None,
lora_scale=1.0,
save_intermediate_results=True,
**kwargs):
control_mode_dict = {
'canny': 0,
'tile': 1,
'depth': 2,
'blur': 3,
'pose': 4,
'gray': 5,
'lq': 6,
} # for https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Union only
flux_device = self.config['flux'].get('device', 'cpu')
seed = self.config['flux'].get('seed', 0)
generator = torch.Generator(device=flux_device).manual_seed(seed)
hparam_dict = {
'prompt': ' '.join(['A grid of 2x4 multi-view image, elevation 5. White background.', prompt]),
'image': image or torch.zeros((1, 3, 1024, 2048), dtype=torch.float32, device=flux_device),
'strength': strength,
'num_inference_steps': 30,
'guidance_scale': 3.5,
'num_images_per_prompt': 1,
'width': 2048,
'height': 1024,
'output_type': 'np',
'generator': generator,
'joint_attention_kwargs': {"scale": lora_scale}
}
hparam_dict.update(kwargs)
# append controlnet hparams
if len(control_image) > 0:
assert isinstance(self.flux_pipeline, FluxControlNetImg2ImgPipeline)
assert len(control_mode) == len(control_image) # the count of image should be the same as control mode
flux_ctrl_net = self.flux_pipeline.controlnet.nets[0]
self.flux_pipeline.controlnet = FluxMultiControlNetModel([flux_ctrl_net for i in range(len(control_image))])
ctrl_hparams = {
'control_mode': [control_mode_dict[mode_] for mode_ in control_mode],
'control_image': control_image,
'control_guidance_start': control_guidance_start or [0.0 for i in range(len(control_image))],
'control_guidance_end': control_guidance_end or [1.0 for i in range(len(control_image))],
'controlnet_conditioning_scale': controlnet_conditioning_scale or [1.0 for i in range(len(control_image))],
}
hparam_dict.update(ctrl_hparams)
with self.context():
gen_3d_bundle_image = self.flux_pipeline(**hparam_dict).images
gen_3d_bundle_image_ = torch.from_numpy(gen_3d_bundle_image).squeeze(0).permute(2, 0, 1).contiguous().float() # (3, 1024, 2048)
if save_intermediate_results:
save_path = os.path.join(TMP_DIR, f'{self.uuid}_gen_3d_bundle_image.png')
torchvision.utils.save_image(gen_3d_bundle_image_, save_path)
logger.info(f"Save generated 3D bundle image to {save_path}")
return gen_3d_bundle_image_, save_path
return gen_3d_bundle_image_
def generate_3d_bundle_image_text(self,
prompt,
image=None,
strength=1.0,
lora_scale=1.0,
num_inference_steps=30,
save_intermediate_results=True,
**kwargs):
"""
return: gen_3d_bundle_image, torch.Tensor of shape (3, 1024, 2048), range [0., 1.]
"""
if isinstance(self.flux_pipeline, FluxControlNetImg2ImgPipeline):
flux_pipeline = FluxImg2ImgPipeline(
scheduler = self.flux_pipeline.scheduler,
vae = self.flux_pipeline.vae,
text_encoder = self.flux_pipeline.text_encoder,
tokenizer = self.flux_pipeline.tokenizer,
text_encoder_2 = self.flux_pipeline.text_encoder_2,
tokenizer_2 = self.flux_pipeline.tokenizer_2,
transformer = self.flux_pipeline.transformer
)
else:
flux_pipeline = self.flux_pipeline
flux_device = self.config['flux'].get('device', 'cpu')
seed = self.config['flux'].get('seed', 0)
generator = torch.Generator(device=flux_device).manual_seed(seed)
hparam_dict = {
'prompt': ' '.join(['A grid of 2x4 multi-view image, elevation 5. White background.', prompt]),
'image': image or torch.zeros((1, 3, 1024, 2048), dtype=torch.float32, device=flux_device),
'strength': strength,
'num_inference_steps': num_inference_steps,
'guidance_scale': 3.5,
'num_images_per_prompt': 1,
'width': 2048,
'height': 1024,
'output_type': 'np',
'generator': generator,
'joint_attention_kwargs': {"scale": lora_scale}
}
hparam_dict.update(kwargs)
with self.context():
gen_3d_bundle_image = flux_pipeline(**hparam_dict).images
gen_3d_bundle_image_ = torch.from_numpy(gen_3d_bundle_image).squeeze(0).permute(2, 0, 1).contiguous().float() # (3, 1024, 2048)
if save_intermediate_results:
save_path = os.path.join(TMP_DIR, f'{self.uuid}_gen_3d_bundle_image.png')
torchvision.utils.save_image(gen_3d_bundle_image_, save_path)
logger.info(f"Save generated 3D bundle image to {save_path}")
return gen_3d_bundle_image_, save_path
return gen_3d_bundle_image_
def reconstruct_3d_bundle_image(self, image, save_intermediate_results=True):
"""
image: torch.Tensor, range [0., 1.], (3, 1024, 2048)
"""
recon_device = self.config['reconstruction'].get('device', 'cpu')
# split rgb and normal
images = rearrange(image, 'c (n h) (m w) -> (n m) c h w', n=2, m=4) # (3, 1024, 2048) -> (8, 3, 512, 512)
rgb_multi_view, normal_multi_view = images.chunk(2, dim=0)
multi_view_mask = get_background(normal_multi_view).to(recon_device)
rgb_multi_view = rgb_multi_view.to(recon_device) * multi_view_mask + (1 - multi_view_mask)
with self.context():
vertices, faces, lrm_multi_view_normals, lrm_multi_view_rgb, lrm_multi_view_albedo = \
lrm_reconstruct(self.recon_model, self.recon_model_config.infer_config,
rgb_multi_view.unsqueeze(0).to(recon_device), name=self.uuid,
input_camera_type='kiss3d', render_3d_bundle_image=save_intermediate_results,
render_azimuths=[0, 90, 180, 270])
if save_intermediate_results:
recon_3D_bundle_image = torchvision.utils.make_grid(torch.cat([lrm_multi_view_rgb.cpu(), (lrm_multi_view_normals.cpu() + 1) / 2], dim=0), nrow=4, padding=0).unsqueeze(0) # range [0, 1]
torchvision.utils.save_image(recon_3D_bundle_image, os.path.join(TMP_DIR, f'{k3d_wrapper.uuid})_lrm_recon_3d_bundle_image.png'))
recon_mesh_path = os.path.join(TMP_DIR, f"{self.uuid}_isomer_recon_mesh.obj")
return isomer_reconstruct(rgb_multi_view=rgb_multi_view,
normal_multi_view=normal_multi_view,
multi_view_mask=multi_view_mask,
vertices=vertices,
faces=faces,
save_path=recon_mesh_path)
def run_text_to_3d(k3d_wrapper,
prompt,
init_image_path=None):
# ======================================= Example of text to 3D generation ======================================
# Renew The uuid
k3d_wrapper.renew_uuid()
# FOR Text to 3D (also for image to image) with init image
init_image = None
if init_image_path is not None:
init_image = Image.open(init_image_path)
gen_3d_bundle_image, gen_save_path = k3d_wrapper.generate_3d_bundle_image_text(prompt,
image=init_image,
strength=1.0,
save_intermediate_results=True)
# recon from 3D Bundle image
recon_mesh_path = k3d_wrapper.reconstruct_3d_bundle_image(gen_3d_bundle_image, save_intermediate_results=False)
return gen_save_path, recon_mesh_path
def run_image_to_3d(k3d_wrapper, init_image_path):
# ======================================= Example of image to 3D generation ======================================
# Renew The uuid
k3d_wrapper.renew_uuid()
# FOR IMAGE TO 3D: generate reference 3D bundle image from a single input image
input_image = Image.open(init_image_path)
reference_3d_bundle_image, reference_save_path = k3d_wrapper.generate_reference_3D_bundle_image_zero123(input_image)
caption = k3d_wrapper.get_image_caption(input_image)
import pdb
pdb.set_trace()
if __name__ == "__main__":
k3d_wrapper = init_wrapper_from_config('/hpc2hdd/home/jlin695/code/Kiss3DGen/pipeline/pipeline_config/default.yaml')
# Example of loading existing 3D bundle Image
# demo_image = Image.open('/hpc2hdd/home/jlin695/code/github/Kiss3DGen/outputs/tmp/ea25bc9b-d775-46bb-9827-660a9a6540c8_gen_3d_bundle_image.png')
# gen_3d_bundle_image = torchvision.transforms.functional.to_tensor(demo_image)
run_image_to_3d(k3d_wrapper, '/hpc2hdd/home/jlin695/code/Kiss3DGen/examples/蓝色小怪物.webp')
# run_text_to_3d(k3d_wrapper, prompt='A doll of a girl in Harry Potter')
|