File size: 19,119 Bytes
4157d39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
# The kiss3d pipeline wrapper for inference

import os
import numpy as np
import torch
import yaml
import uuid
from typing import Union, Any, Dict
from einops import rearrange
from PIL import Image

from pipeline.utils import logger, TMP_DIR, OUT_DIR
from pipeline.utils import lrm_reconstruct, isomer_reconstruct

import torch
import torchvision

# for reconstruction model
from omegaconf import OmegaConf
from models.lrm.utils.train_util import instantiate_from_config
from models.lrm.utils.render_utils import rotate_x, rotate_y
from utils.tool import get_background

# for florence2
from transformers import AutoProcessor, AutoModelForCausalLM

from diffusers import FluxPipeline, FluxControlNetImg2ImgPipeline, FluxImg2ImgPipeline, DiffusionPipeline, EulerAncestralDiscreteScheduler
from diffusers.models.controlnet_flux import FluxControlNetModel, FluxMultiControlNetModel


def init_wrapper_from_config(config_path):
    with open(config_path, 'r') as config_file:
        config_ = yaml.load(config_file, yaml.FullLoader)
    
    # init flux_pipeline
    logger.info('==> Loading Flux model ...')
    flux_device = config_['flux'].get('device', 'cpu')
    flux_base_model_pth = config_['flux'].get('base_model', None)
    flux_controlnet_pth = config_['flux'].get('controlnet', None)
    flux_lora_pth = config_['flux'].get('lora', None)

    # load flux model and controlnet
    if flux_controlnet_pth is not None:
        flux_controlnet = FluxControlNetModel.from_pretrained(flux_controlnet_pth)
        flux_pipe = FluxControlNetImg2ImgPipeline.from_pretrained(flux_base_model_pth, controlnet=[flux_controlnet], \
                                torch_dtype=torch.bfloat16)
    else:
        flux_pipe = FluxImg2ImgPipeline(flux_base_model_pth, torch_dtype=torch.bfloat16)
    
    # load lora weights
    flux_pipe.load_lora_weights(flux_lora_pth)
    flux_pipe.to(device=flux_device, dtype=torch.bfloat16)

    # TODO: load redux model
    # FluxPriorReduxPipeline.from_pretrained()

    # TODO: load pulid model

    # init multiview model
    logger.info('==> Loading multiview diffusion model ...')
    multiview_device = config_['multiview'].get('device', 'cpu')
    multiview_pipeline = DiffusionPipeline.from_pretrained(
        config_['multiview']['base_model'], 
        custom_pipeline=config_['multiview']['custom_pipeline'],
        torch_dtype=torch.float16,
    )
    multiview_pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
        multiview_pipeline.scheduler.config, timestep_spacing='trailing'
    )
    
    unet_ckpt_path = config_['multiview'].get('unet', None)
    if unet_ckpt_path is not None:
        state_dict = torch.load(unet_ckpt_path, map_location='cpu')['state_dict']
        state_dict = {k[10:]: v for k, v in state_dict.items() if k.startswith('unet.unet.')}
        multiview_pipeline.unet.load_state_dict(state_dict, strict=True)

    multiview_pipeline.to(multiview_device)

    # load caption model
    logger.info('==> Loading caption model ...')
    caption_device = config_['caption'].get('device', 'cpu')
    caption_model = AutoModelForCausalLM.from_pretrained(config_['caption']['base_model'], \
                    torch_dtype=torch.bfloat16, trust_remote_code=True).to(caption_device)
    caption_processor = AutoProcessor.from_pretrained(config_['caption']['base_model'], trust_remote_code=True)

    # load reconstruction model
    logger.info('==> Loading reconstruction model ...')
    recon_device = config_['reconstruction'].get('device', 'cpu')
    recon_model_config = OmegaConf.load(config_['reconstruction']['model_config'])
    recon_model = instantiate_from_config(recon_model_config.model_config)
    # load recon model checkpoint
    state_dict = torch.load(config_['reconstruction']['base_model'], map_location='cpu')['state_dict']
    state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.')}
    recon_model.load_state_dict(state_dict, strict=True)
    recon_model.to(recon_device)
    recon_model.init_flexicubes_geometry(recon_device, fovy=50.0)
    recon_model.eval()

    return kiss3d_wrapper(
        config = config_,
        flux_pipeline = flux_pipe,
        multiview_pipeline = multiview_pipeline,
        caption_processor = caption_processor,
        caption_model = caption_model,
        reconstruction_model_config = recon_model_config,
        reconstruction_model = recon_model,
    )

class kiss3d_wrapper(object):
    def __init__(self,
        config: Dict,
        flux_pipeline: Union[FluxPipeline, FluxControlNetImg2ImgPipeline],
        multiview_pipeline: DiffusionPipeline,
        caption_processor: AutoProcessor,
        caption_model: AutoModelForCausalLM,
        reconstruction_model_config: Any,
        reconstruction_model: Any,
    ):
        self.config = config
        self.flux_pipeline = flux_pipeline
        self.multiview_pipeline = multiview_pipeline
        self.caption_model = caption_model
        self.caption_processor = caption_processor
        self.recon_model_config = reconstruction_model_config
        self.recon_model = reconstruction_model        

        self.renew_uuid()

    def renew_uuid(self):
        self.uuid = uuid.uuid4()

    def context(self):
        if self.config['use_zero_gpu']:
            import spaces
            return spaces.GPU()
        else:
            return torch.no_grad()

    def get_image_caption(self, image):
        """
        image: PIL image or path of PIL image
        """
        torch_dtype = torch.bfloat16
        caption_device = self.config['caption'].get('device', 'cpu')

        if isinstance(image, str):  # If image is a file path
            image = Image.open(image).convert("RGB")
        elif isinstance(image, Image):
            image = image.convert("RGB")
        else:
            raise NotImplementedError('unexpected image type')
        
        prompt = "<MORE_DETAILED_CAPTION>"
        inputs = self.caption_processor(text=prompt, images=image, return_tensors="pt").to(caption_device, torch_dtype)

        generated_ids = self.caption_model.generate(
                input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3
            )

        generated_text = self.caption_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
        parsed_answer = self.caption_processor.post_process_generation(
            generated_text, task=prompt, image_size=(image.width, image.height)
        )
        caption_text = parsed_answer["<MORE_DETAILED_CAPTION>"].replace("The image is ", "")
        return caption_text

    def generate_multiview(self, image):
        with self.context():
            mv_image = self.multiview_pipeline(image, 
                                               num_inference_steps=self.config['multiview']['num_inference_steps'], 
                                               width=512*2, height=512*2).images[0]
        return mv_image

    def reconstruct_from_multiview(self, mv_image):
        """
        mv_image: PIL.Image
        """
        recon_device = self.config['reconstruction'].get('device', 'cpu')

        rgb_multi_view = np.asarray(mv_image, dtype=np.float32) / 255.0
        rgb_multi_view = torch.from_numpy(rgb_multi_view).squeeze(0).permute(2, 0, 1).contiguous().float()     # (3, 1024, 2048)
        rgb_multi_view = rearrange(rgb_multi_view, 'c (n h) (m w) -> (n m) c h w', n=2, m=2).unsqueeze(0).to(recon_device)

        with self.context():
            vertices, faces, lrm_multi_view_normals, lrm_multi_view_rgb, lrm_multi_view_albedo = \
            lrm_reconstruct(self.recon_model, self.recon_model_config.infer_config,
                            rgb_multi_view, name=self.uuid)

        return vertices, faces, lrm_multi_view_normals, lrm_multi_view_rgb, lrm_multi_view_albedo
    
    def generate_reference_3D_bundle_image_zero123(self, image, save_intermediate_results=True):
        """
        input: image, PIL.Image
        return: ref_3D_bundle_image, Tensor of shape (1, 3, 1024, 2048)
        """
        mv_image = self.generate_multiview(image)

        if save_intermediate_results:
            mv_image.save(os.path.join(TMP_DIR, f'{self.uuid}_mv_image.png'))

        vertices, faces, lrm_multi_view_normals, lrm_multi_view_rgb, lrm_multi_view_albedo = self.reconstruct_from_multiview(mv_image)

        ref_3D_bundle_image = torchvision.utils.make_grid(torch.cat([lrm_multi_view_rgb.cpu(), (lrm_multi_view_normals.cpu() + 1) / 2], dim=0), nrow=4, padding=0).unsqueeze(0) # range [0, 1]
        
        if save_intermediate_results:
            save_path = os.path.join(TMP_DIR, f'{self.uuid}_ref_3d_bundle_image.png')
            torchvision.utils.save_image(ref_3D_bundle_image, save_path)

            logger.info(f"Save reference 3D bundle image to {save_path}")

            return ref_3D_bundle_image, save_path

        return ref_3D_bundle_image

    def generate_3d_bundle_image_controlnet(self, 
                                 prompt, 
                                 image=None,
                                 strength=1.0, 
                                 control_image=[],
                                 control_mode=[],
                                 control_guidance_start=None,
                                 control_guidance_end=None,
                                 controlnet_conditioning_scale=None,
                                 lora_scale=1.0,
                                 save_intermediate_results=True,
                                 **kwargs):
        control_mode_dict = {
            'canny': 0,
            'tile': 1,
            'depth': 2,
            'blur': 3,
            'pose': 4,
            'gray': 5,
            'lq': 6,
        } # for https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Union only

        flux_device = self.config['flux'].get('device', 'cpu')
        seed = self.config['flux'].get('seed', 0)

        generator = torch.Generator(device=flux_device).manual_seed(seed)

        hparam_dict = {
            'prompt': ' '.join(['A grid of 2x4 multi-view image, elevation 5. White background.', prompt]),
            'image': image or torch.zeros((1, 3, 1024, 2048), dtype=torch.float32, device=flux_device),
            'strength': strength,
            'num_inference_steps': 30,
            'guidance_scale': 3.5,
            'num_images_per_prompt': 1,
            'width': 2048,
            'height': 1024,
            'output_type': 'np',
            'generator': generator,
            'joint_attention_kwargs': {"scale": lora_scale}
        }
        hparam_dict.update(kwargs)
        
         # append controlnet hparams
        if len(control_image) > 0:
            assert isinstance(self.flux_pipeline, FluxControlNetImg2ImgPipeline)
            assert len(control_mode) == len(control_image) # the count of image should be the same as control mode
            
            flux_ctrl_net = self.flux_pipeline.controlnet.nets[0]
            self.flux_pipeline.controlnet = FluxMultiControlNetModel([flux_ctrl_net for i in range(len(control_image))])

            ctrl_hparams = {
                'control_mode': [control_mode_dict[mode_] for mode_ in control_mode],
                'control_image': control_image,
                'control_guidance_start': control_guidance_start or [0.0 for i in range(len(control_image))],
                'control_guidance_end': control_guidance_end or [1.0 for i in range(len(control_image))],
                'controlnet_conditioning_scale': controlnet_conditioning_scale or [1.0 for i in range(len(control_image))],
            }

            hparam_dict.update(ctrl_hparams)

        with self.context():
            gen_3d_bundle_image = self.flux_pipeline(**hparam_dict).images
        
        gen_3d_bundle_image_ = torch.from_numpy(gen_3d_bundle_image).squeeze(0).permute(2, 0, 1).contiguous().float()     # (3, 1024, 2048)

        if save_intermediate_results:
            save_path = os.path.join(TMP_DIR, f'{self.uuid}_gen_3d_bundle_image.png')
            torchvision.utils.save_image(gen_3d_bundle_image_, save_path)
            logger.info(f"Save generated 3D bundle image to {save_path}")
            return gen_3d_bundle_image_, save_path

        return gen_3d_bundle_image_


    def generate_3d_bundle_image_text(self, 
                                      prompt,
                                      image=None, 
                                      strength=1.0,
                                      lora_scale=1.0,
                                      num_inference_steps=30,
                                      save_intermediate_results=True,
                                      **kwargs):
        
        """
        return: gen_3d_bundle_image, torch.Tensor of shape (3, 1024, 2048), range [0., 1.]
        """
        
        if isinstance(self.flux_pipeline, FluxControlNetImg2ImgPipeline):
            flux_pipeline = FluxImg2ImgPipeline(
                scheduler = self.flux_pipeline.scheduler,
                vae = self.flux_pipeline.vae,
                text_encoder = self.flux_pipeline.text_encoder,
                tokenizer = self.flux_pipeline.tokenizer,
                text_encoder_2 = self.flux_pipeline.text_encoder_2,
                tokenizer_2 = self.flux_pipeline.tokenizer_2,
                transformer = self.flux_pipeline.transformer
            )
        else:
            flux_pipeline = self.flux_pipeline

        flux_device = self.config['flux'].get('device', 'cpu')
        seed = self.config['flux'].get('seed', 0)

        generator = torch.Generator(device=flux_device).manual_seed(seed)

        hparam_dict = {
            'prompt': ' '.join(['A grid of 2x4 multi-view image, elevation 5. White background.', prompt]),
            'image': image or torch.zeros((1, 3, 1024, 2048), dtype=torch.float32, device=flux_device),
            'strength': strength,
            'num_inference_steps': num_inference_steps,
            'guidance_scale': 3.5,
            'num_images_per_prompt': 1,
            'width': 2048,
            'height': 1024,
            'output_type': 'np',
            'generator': generator,
            'joint_attention_kwargs': {"scale": lora_scale}
        }
        hparam_dict.update(kwargs)

        with self.context():
            gen_3d_bundle_image = flux_pipeline(**hparam_dict).images

        gen_3d_bundle_image_ = torch.from_numpy(gen_3d_bundle_image).squeeze(0).permute(2, 0, 1).contiguous().float()     # (3, 1024, 2048)

        if save_intermediate_results:
            save_path = os.path.join(TMP_DIR, f'{self.uuid}_gen_3d_bundle_image.png')
            torchvision.utils.save_image(gen_3d_bundle_image_, save_path)
            logger.info(f"Save generated 3D bundle image to {save_path}")
            return gen_3d_bundle_image_, save_path

        return gen_3d_bundle_image_
    
    def reconstruct_3d_bundle_image(self, image, save_intermediate_results=True):
        """
        image: torch.Tensor, range [0., 1.], (3, 1024, 2048)
        """
        recon_device = self.config['reconstruction'].get('device', 'cpu')

        # split rgb and normal
        images = rearrange(image, 'c (n h) (m w) -> (n m) c h w', n=2, m=4) # (3, 1024, 2048) -> (8, 3, 512, 512)
        rgb_multi_view, normal_multi_view = images.chunk(2, dim=0)
        multi_view_mask = get_background(normal_multi_view).to(recon_device)
        rgb_multi_view = rgb_multi_view.to(recon_device) * multi_view_mask + (1 - multi_view_mask)
        
        with self.context():
            vertices, faces, lrm_multi_view_normals, lrm_multi_view_rgb, lrm_multi_view_albedo = \
            lrm_reconstruct(self.recon_model, self.recon_model_config.infer_config,
                            rgb_multi_view.unsqueeze(0).to(recon_device), name=self.uuid, 
                            input_camera_type='kiss3d', render_3d_bundle_image=save_intermediate_results,
                            render_azimuths=[0, 90, 180, 270])

        if save_intermediate_results:
            recon_3D_bundle_image = torchvision.utils.make_grid(torch.cat([lrm_multi_view_rgb.cpu(), (lrm_multi_view_normals.cpu() + 1) / 2], dim=0), nrow=4, padding=0).unsqueeze(0) # range [0, 1]        
            torchvision.utils.save_image(recon_3D_bundle_image, os.path.join(TMP_DIR, f'{k3d_wrapper.uuid})_lrm_recon_3d_bundle_image.png'))

        recon_mesh_path = os.path.join(TMP_DIR, f"{self.uuid}_isomer_recon_mesh.obj")
        
        return isomer_reconstruct(rgb_multi_view=rgb_multi_view,
                                  normal_multi_view=normal_multi_view,
                                  multi_view_mask=multi_view_mask,
                                  vertices=vertices,
                                  faces=faces,
                                  save_path=recon_mesh_path)


def run_text_to_3d(k3d_wrapper,
                   prompt,
                   init_image_path=None):
    # ======================================= Example of text to 3D generation ======================================

    # Renew The uuid
    k3d_wrapper.renew_uuid()

    # FOR Text to 3D (also for image to image) with init image
    init_image = None
    if init_image_path is not None:
        init_image = Image.open(init_image_path)

    gen_3d_bundle_image, gen_save_path = k3d_wrapper.generate_3d_bundle_image_text(prompt, 
                                                                                     image=init_image, 
                                                                                     strength=1.0, 
                                                                                     save_intermediate_results=True)

    # recon from 3D Bundle image
    recon_mesh_path = k3d_wrapper.reconstruct_3d_bundle_image(gen_3d_bundle_image, save_intermediate_results=False)

    return gen_save_path, recon_mesh_path

def run_image_to_3d(k3d_wrapper, init_image_path):
    # ======================================= Example of image to 3D generation ======================================

    # Renew The uuid
    k3d_wrapper.renew_uuid()

    # FOR IMAGE TO 3D: generate reference 3D bundle image from a single input image
    input_image = Image.open(init_image_path)
    reference_3d_bundle_image, reference_save_path = k3d_wrapper.generate_reference_3D_bundle_image_zero123(input_image)
    caption = k3d_wrapper.get_image_caption(input_image)


    import pdb
    pdb.set_trace()


if __name__ == "__main__":
    k3d_wrapper = init_wrapper_from_config('/hpc2hdd/home/jlin695/code/Kiss3DGen/pipeline/pipeline_config/default.yaml')

    # Example of loading existing 3D bundle Image
    # demo_image = Image.open('/hpc2hdd/home/jlin695/code/github/Kiss3DGen/outputs/tmp/ea25bc9b-d775-46bb-9827-660a9a6540c8_gen_3d_bundle_image.png')
    # gen_3d_bundle_image = torchvision.transforms.functional.to_tensor(demo_image)

    run_image_to_3d(k3d_wrapper, '/hpc2hdd/home/jlin695/code/Kiss3DGen/examples/蓝色小怪物.webp')
    # run_text_to_3d(k3d_wrapper, prompt='A doll of a girl in Harry Potter')