File size: 6,037 Bytes
98bebfc
 
 
 
fb750cf
98bebfc
7c786bc
01d61ef
 
 
 
 
7c786bc
7504eb0
98bebfc
cdb6265
 
 
98bebfc
 
 
 
 
 
 
 
 
 
 
7c786bc
98bebfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bca10b4
 
 
 
98bebfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# modified from https://github.com/Profactor/continuous-remeshing
import nvdiffrast.torch as dr
import torch
from typing import Tuple
import spaces

glctx = None
# @spaces.GPU
# def init_render():
#     global glctx
#     glctx = dr.RasterizeCudaContext(device="cuda")
# init_render()

@spaces.GPU
def _warmup(glctx, device=None):
    if glctx==None:
        print("==> glctx in none")
        glctx = dr.RasterizeCudaContext(device="cuda")
    device = 'cuda' if device is None else device
    #windows workaround for https://github.com/NVlabs/nvdiffrast/issues/59
    def tensor(*args, **kwargs):
        return torch.tensor(*args, device=device, **kwargs)

    # defines a triangle in homogeneous coordinates and calls dr.rasterize to render this triangle, which may help to initialize or warm up the GPU context
    pos = tensor([[[-0.8, -0.8, 0, 1], [0.8, -0.8, 0, 1], [-0.8, 0.8, 0, 1]]], dtype=torch.float32)
    tri = tensor([[0, 1, 2]], dtype=torch.int32)
    dr.rasterize(glctx, pos, tri, resolution=[256, 256])

# glctx = dr.RasterizeGLContext(output_db=False, device="cuda")

class NormalsRenderer:
    
    _glctx:dr.RasterizeCudaContext = None
    
    def __init__(
            self,
            mv: torch.Tensor, #C,4,4  # normal column-major (unlike pytorch3d)
            proj: torch.Tensor, #C,4,4
            image_size: Tuple[int,int],
            mvp = None,
            device=None,
            ):
        if mvp is None:
            self._mvp = proj @ mv #C,4,4
        else:
            self._mvp = mvp
        self._image_size = image_size
        if glctx==None:
            self._glctx = dr.RasterizeCudaContext(device="cuda")
        else:
            self._glctx = glctx
        _warmup(self._glctx, device)

    def render(self,
            vertices: torch.Tensor, #V,3 float
            normals: torch.Tensor, #V,3 float   in [-1, 1]
            faces: torch.Tensor, #F,3 long
            ) ->torch.Tensor: #C,H,W,4

        V = vertices.shape[0]
        faces = faces.type(torch.int32)
        vert_hom = torch.cat((vertices, torch.ones(V,1,device=vertices.device)),axis=-1) #V,3 -> V,4
        # transforms the vertices into clip space using the mvp matrix.
        vertices_clip = vert_hom @ self._mvp.transpose(-2,-1) #C,V,4 # the .transpose(-2,-1) operation ensures that the matrix multiplication aligns with the row-major convention.
        rast_out,_ = dr.rasterize(self._glctx, vertices_clip, faces, resolution=self._image_size, grad_db=False) #C,H,W,4 -> 4 includes the barycentric coordinates and other data.
        vert_col = (normals+1)/2 #V,3
        # this function takes the attributes (colors) defined at the vertices and computes their values at each pixel (or fragment) within the triangles
        col,_ = dr.interpolate(vert_col, rast_out, faces) #C,H,W,3
        alpha = torch.clamp(rast_out[..., -1:], max=1) #C,H,W,1
        col = torch.concat((col,alpha),dim=-1) #C,H,W,4
        col = dr.antialias(col, rast_out, vertices_clip, faces) #C,H,W,4
        return col #C,H,W,4



from pytorch3d.structures import Meshes
from pytorch3d.renderer.mesh.shader import ShaderBase
from pytorch3d.renderer import (
    RasterizationSettings,
    MeshRendererWithFragments,
    TexturesVertex,
    MeshRasterizer,
    BlendParams,
    FoVOrthographicCameras,
    look_at_view_transform,
    hard_rgb_blend,
)

class VertexColorShader(ShaderBase):
    def forward(self, fragments, meshes, **kwargs) -> torch.Tensor:
        blend_params = kwargs.get("blend_params", self.blend_params)
        texels = meshes.sample_textures(fragments)
        return hard_rgb_blend(texels, fragments, blend_params)

def render_mesh_vertex_color(mesh, cameras, H, W, blur_radius=0.0, faces_per_pixel=1, bkgd=(0., 0., 0.), dtype=torch.float32, device="cuda"):
    if len(mesh) != len(cameras):
        if len(cameras) % len(mesh) == 0:
            mesh = mesh.extend(len(cameras))
        else:
            raise NotImplementedError()
    
    # render requires everything in float16 or float32
    input_dtype = dtype
    blend_params = BlendParams(1e-4, 1e-4, bkgd)

    # Define the settings for rasterization and shading
    raster_settings = RasterizationSettings(
        image_size=(H, W),
        blur_radius=blur_radius,
        faces_per_pixel=faces_per_pixel,
        clip_barycentric_coords=True,
        bin_size=None,
        max_faces_per_bin=None,
    )

    # Create a renderer by composing a rasterizer and a shader
    # We simply render vertex colors through the custom VertexColorShader (no lighting, materials are used)
    renderer = MeshRendererWithFragments(
        rasterizer=MeshRasterizer(
            cameras=cameras,
            raster_settings=raster_settings
        ),
        shader=VertexColorShader(
            device=device,
            cameras=cameras,
            blend_params=blend_params
        )
    )

    # render RGB and depth, get mask
    with torch.autocast(dtype=input_dtype, device_type=torch.device(device).type):
        images, _ = renderer(mesh)
    return images   # BHW4

class Pytorch3DNormalsRenderer: # 100 times slower!!!
    def __init__(self, cameras, image_size, device):
        self.cameras = cameras.to(device)
        self._image_size = image_size
        self.device = device
    
    def render(self,
            vertices: torch.Tensor, #V,3 float
            normals: torch.Tensor, #V,3 float   in [-1, 1]
            faces: torch.Tensor, #F,3 long
            ) ->torch.Tensor: #C,H,W,4
        mesh = Meshes(verts=[vertices], faces=[faces], textures=TexturesVertex(verts_features=[(normals + 1) / 2])).to(self.device)
        return render_mesh_vertex_color(mesh, self.cameras, self._image_size[0], self._image_size[1], device=self.device)
    
def save_tensor_to_img(tensor, save_dir):
    from PIL import Image
    import numpy as np
    for idx, img in enumerate(tensor):
        img = img[..., :3].cpu().numpy()
        img = (img * 255).astype(np.uint8)
        img = Image.fromarray(img)
        img.save(save_dir + f"{idx}.png")