Kiss3DGen / models /lrm /online_render /data /online_render_dataloader.py
JiantaoLin
initial commit
98bebfc
raw
history blame
18.7 kB
import os, sys
import math
import json
import importlib
import time
import glm
from pathlib import Path
import cv2
import torchvision
import random
from tqdm import tqdm
import numpy as np
from PIL import Image
# import webdataset as wds
from torch.utils.data import DataLoader
import open3d as o3d
import sys
import nvdiffrast.torch as dr
from ..src.utils import obj, mesh, render_utils, render
import torch
import torch.nn.functional as F
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from torchvision import transforms
import random
from kiui.cam import orbit_camera
import itertools
from ..src.utils.material import Material
from ..utils.camera_util import (
FOV_to_intrinsics,
center_looking_at_camera_pose,
get_circular_camera_poses,
)
os.environ["OPENCV_IO_ENABLE_OPENEXR"]="1"
import re
# import torch.multiprocessing as mp
# # 设置 torch.multiprocessing 的启动方法为 'spawn'
# mp.set_start_method('spawn', force=True)
GLCTX = [None] * torch.cuda.device_count() # 存储每个 GPU 的上下文
def initialize_extension(gpu_id):
global GLCTX
if GLCTX[gpu_id] is None:
print(f"Initializing extension module renderutils_plugin on GPU {gpu_id}...")
torch.cuda.set_device(gpu_id)
GLCTX[gpu_id] = dr.RasterizeCudaContext()
return GLCTX[gpu_id]
def spherical_camera_pose(azimuths: np.ndarray, elevations: np.ndarray, radius=2.5):
azimuths = np.deg2rad(azimuths)
elevations = np.deg2rad(elevations)
xs = radius * np.cos(elevations) * np.cos(azimuths)
ys = radius * np.cos(elevations) * np.sin(azimuths)
zs = radius * np.sin(elevations)
cam_locations = np.stack([xs, ys, zs], axis=-1)
cam_locations = torch.from_numpy(cam_locations).float()
c2ws = center_looking_at_camera_pose(cam_locations)
return c2ws
def get_camera(
azimuths, elevations, blender_coord=True, extra_view=False,radius=1.0
):
cameras = []
for index, azimuth in enumerate(azimuths):
elevation = elevations[index]
elevation = 90 - elevation
pose = orbit_camera(-elevation, azimuth, radius=radius) # kiui's elevation is negated, [4, 4]
# opengl to blender
if blender_coord:
pose[2] *= -1
pose[[1, 2]] = pose[[2, 1]]
cameras.append(pose.flatten())
if extra_view:
cameras.append(np.zeros_like(cameras[0]))
return torch.from_numpy(np.stack(cameras, axis=0)).float() # [num_frames, 16]
def load_mipmap(env_path):
diffuse_path = os.path.join(env_path, "diffuse.pth")
diffuse = torch.load(diffuse_path, map_location=torch.device('cpu'))
specular = []
for i in range(6):
specular_path = os.path.join(env_path, f"specular_{i}.pth")
specular_tensor = torch.load(specular_path, map_location=torch.device('cpu'))
specular.append(specular_tensor)
return [specular, diffuse]
def convert_to_white_bg(image, write_bg=True):
alpha = image[:, :, 3:]
if write_bg:
return image[:, :, :3] * alpha + 1. * (1 - alpha)
else:
return image[:, :, :3] * alpha
def load_obj(path, return_attributes=False):
return obj.load_obj(path, clear_ks=True, mtl_override=None, return_attributes=return_attributes)
def custom_collate_fn(batch):
return batch
def collate_fn_wrapper(batch):
return custom_collate_fn(batch)
class ObjaverseData(Dataset):
def __init__(self,
root_dir='obj_demo',
light_dir= 'data/env_mipmap/',
target_view_num=4,
fov=30,
camera_distance=4.5,
validation=False,
random_camera=False,
random_elevation=False,
):
self.root_dir = Path(root_dir)
self.light_dir = light_dir
self.all_env_name = []
self.if_validation = validation
self.random_camera = random_camera
for temp_dir in os.listdir(light_dir):
if os.listdir(os.path.join(self.light_dir, temp_dir)):
self.all_env_name.append(temp_dir)
self.target_view_num = target_view_num
self.fov = fov
self.train_res = [512, 512]
self.cam_near_far = [0.1, 1000.0]
self.random_elevation = random_elevation
self.spp = 1
self.cam_radius = camera_distance
self.layers = 1
numbers = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
self.combinations = list(itertools.product(numbers, repeat=2))
with open("pbr_objs_final_mesh_valid.json", 'r') as file:
all_paths = json.load(file)
if not self.if_validation:
self.paths = all_paths[:-100]
if self.if_validation:
self.paths = all_paths[-100:]
print('total object num:', len(self.paths))
print('============= length of dataset %d =============' % len(self.paths))
def __len__(self):
return len(self.paths)
def calculate_fov(self, initial_distance, initial_fov, new_distance):
initial_fov_rad = math.radians(initial_fov)
height = 2 * initial_distance * math.tan(initial_fov_rad / 2)
new_fov_rad = 2 * math.atan(height / (2 * new_distance))
new_fov = math.degrees(new_fov_rad)
return new_fov
def load_obj(self, path):
return obj.load_obj(path, clear_ks=True, mtl_override=None)
def sample_spherical(self, phi, theta, cam_radius):
theta = np.deg2rad(theta)
phi = np.deg2rad(phi)
z = cam_radius * np.cos(phi) * np.sin(theta)
x = cam_radius * np.sin(phi) * np.sin(theta)
y = cam_radius * np.cos(theta)
return x, y, z
def _random_scene(self, num_frame):
if self.random_camera and not self.if_validation:
random_perturbation = random.uniform(-1.5, 1.5)
cam_radius = self.cam_radius + random_perturbation
fov = self.calculate_fov(initial_distance=self.cam_radius, initial_fov=self.fov, new_distance=cam_radius)
fov_rad = np.deg2rad(fov)
else:
cam_radius = self.cam_radius
fov = self.fov
fov_rad = np.deg2rad(self.fov)
iter_res = self.train_res
proj_mtx = render_utils.perspective(fov_rad, iter_res[1] / iter_res[0], self.cam_near_far[0], self.cam_near_far[1])
start_angle = random.uniform(0, 360)
azimuths = [(start_angle + i * 90) % 360 for i in range(num_frame)]
if self.random_elevation:
elevations = [random.uniform(30, 150)] * num_frame
else:
elevations = [90] * num_frame
all_mv = []
all_mvp = []
all_campos = []
input_extrinsics = get_camera(azimuths, elevations=elevations, extra_view=False, radius=cam_radius)
input_extrinsics = input_extrinsics[:, :12]
input_Ks = FOV_to_intrinsics(fov)
input_intrinsics = input_Ks.flatten(0).unsqueeze(0).repeat(len(azimuths), 1)
input_intrinsics = torch.stack([
input_intrinsics[:, 0], input_intrinsics[:, 4],
input_intrinsics[:, 2], input_intrinsics[:, 5],
], dim=-1)
camera_embedding = torch.cat([input_extrinsics, input_intrinsics], dim=-1)
if not self.if_validation:
camera_embedding = camera_embedding + torch.rand_like(camera_embedding) * 0.04
for index, azimuth in enumerate(azimuths):
x, y, z = self.sample_spherical(azimuth, elevations[index], cam_radius)
eye = glm.vec3(x, y, z)
at = glm.vec3(0.0, 0.0, 0.0)
up = glm.vec3(0.0, 1.0, 0.0)
view_matrix = glm.lookAt(eye, at, up)
mv = torch.from_numpy(np.array(view_matrix))
mvp = proj_mtx @ (mv) #w2c
campos = torch.linalg.inv(mv)[:3, 3]
all_mv.append(mv[None, ...])
all_mvp.append(mvp[None, ...])
all_campos.append(campos[None, ...])
return all_mv, all_mvp, all_campos, None, camera_embedding
def load_im(self, path, color):
'''
replace background pixel with random color in rendering
'''
pil_img = Image.open(path)
image = np.asarray(pil_img, dtype=np.float32) / 255.
alpha = image[:, :, 3:]
image = image[:, :, :3] * alpha + color * (1 - alpha)
image = torch.from_numpy(image).permute(2, 0, 1).contiguous().float()
alpha = torch.from_numpy(alpha).permute(2, 0, 1).contiguous().float()
return image, alpha
def load_albedo(self, path, color, mask):
'''
replace background pixel with random color in rendering
'''
pil_img = Image.open(path)
image = np.asarray(pil_img, dtype=np.float32) / 255.
image = torch.from_numpy(image).permute(2, 0, 1).contiguous().float()
color = torch.ones_like(image)
image = image * mask + color * (1 - mask)
return image
def convert_to_white_bg(self, image):
alpha = image[:, :, 3:]
return image[:, :, :3] * alpha + 1. * (1 - alpha)
def __getitem__(self, index):
obj_path = os.path.join(self.root_dir, self.paths[index]+".pth")
pose_list = []
env_list = []
material_list = []
camera_pos = []
c2w_list = []
random_env = False
random_mr = False
selected_env = random.randint(0, len(self.all_env_name)-1)
materials = random.choice(self.combinations)
if random.random() < 0.5:
materials = list(materials)
materials[0] = 0.0
materials = tuple(materials)
all_mv, all_mvp, all_campos, can_c2w, camera_embedding = self._random_scene(self.target_view_num)
for index in range(self.target_view_num):
mv = all_mv[index]
mvp = all_mvp[index]
campos = all_campos[index]
if random_env:
selected_env = random.randint(0, len(self.all_env_name)-1)
env_path = os.path.join(self.light_dir, self.all_env_name[selected_env])
env = load_mipmap(env_path)
if random_mr:
materials = random.choice(self.combinations)
pose_list.append(mvp)
camera_pos.append(campos)
c2w_list.append(mv)
env_list.append(env)
material_list.append(materials)
data = {
'target_view_num': self.target_view_num,
'obj_path': obj_path,
'pose_list': pose_list,
'camera_pos': camera_pos,
'c2w_list': c2w_list,
'env_list': env_list,
'material_list': material_list,
'can_c2w': can_c2w,
'camera_embedding': camera_embedding
}
return data
def rotate_x(a, device=None):
s, c = np.sin(a), np.cos(a)
return torch.tensor([[1, 0, 0, 0],
[0, c,-s, 0],
[0, s, c, 0],
[0, 0, 0, 1]], dtype=torch.float32, device=device)
def rotate_z(a, device=None):
s, c = np.sin(a), np.cos(a)
return torch.tensor([[ c, -s, 0, 0],
[ s, c, 0, 0],
[ 0, 0, 1, 0],
[ 0, 0, 0, 1]], dtype=torch.float32, device=device)
def rotate_y(a, device=None):
s, c = np.sin(a), np.cos(a)
return torch.tensor([[ c, 0, s, 0],
[ 0, 1, 0, 0],
[-s, 0, c, 0],
[ 0, 0, 0, 1]], dtype=torch.float32, device=device)
def collate_fn(batch):
gpu_id = torch.cuda.current_device() # 获取当前线程的 GPU ID
glctx = initialize_extension(gpu_id)
batch_size = len(batch)
iter_res = [512, 512]
iter_spp = 1
layers = 1
target_images, target_alphas, target_depths, target_ccms, target_normals, target_albedos = [], [], [], [], [], []
target_w2cs, target_Ks, target_camera_pos = [], [], []
target_cam_emebdding = []
for sample in batch:
target_cam_emebdding.append(sample["camera_embedding"])
obj_path = sample['obj_path']
with torch.no_grad():
mesh_attributes = torch.load(obj_path, map_location=torch.device('cpu'))
v_pos = mesh_attributes["v_pos"].cuda()
# random_rotate_degree = random.uniform(-30, 30)
# v_pos = v_pos @ rotate_y(random_rotate_degree, device=v_pos.device)[:3, :3]
v_nrm = mesh_attributes["v_nrm"].cuda()
v_tex = mesh_attributes["v_tex"].cuda()
v_tng = mesh_attributes["v_tng"].cuda()
t_pos_idx = mesh_attributes["t_pos_idx"].cuda()
t_nrm_idx = mesh_attributes["t_nrm_idx"].cuda()
t_tex_idx = mesh_attributes["t_tex_idx"].cuda()
t_tng_idx = mesh_attributes["t_tng_idx"].cuda()
material = Material(mesh_attributes["mat_dict"])
material = material.cuda()
ref_mesh = mesh.Mesh(v_pos=v_pos, v_nrm=v_nrm, v_tex=v_tex, v_tng=v_tng,
t_pos_idx=t_pos_idx, t_nrm_idx=t_nrm_idx,
t_tex_idx=t_tex_idx, t_tng_idx=t_tng_idx, material=material)
pose_list_sample = sample['pose_list'] # mvp
camera_pos_sample = sample['camera_pos'] # campos, mv.inverse
c2w_list_sample = sample['c2w_list'] # mv
env_list_sample = sample['env_list']
material_list_sample = sample['material_list']
sample_target_images, sample_target_ccms, sample_target_alphas, sample_target_depths, sample_target_normals, sample_target_albedos = [], [], [], [], [], []
sample_target_w2cs, sample_target_Ks, sample_target_camera_pos = [], [], []
for i in range(len(pose_list_sample)):
mvp = pose_list_sample[i]
campos = camera_pos_sample[i]
env = env_list_sample[i]
materials = material_list_sample[i]
with torch.no_grad():
buffer_dict = render.render_mesh(glctx, ref_mesh, mvp.cuda(), campos.cuda(), [env], None, None,
materials, iter_res, spp=iter_spp, num_layers=layers, msaa=True,
background=None, gt_render=True)
image = convert_to_white_bg(buffer_dict['shaded'][0], write_bg=False)
# ccm = convert_to_white_bg(buffer_dict['ccm'][0], write_bg=False)
# alpha = buffer_dict['mask'][0][...,:3]
# albedo = convert_to_white_bg(buffer_dict['albedo'][0]).clamp(0., 1.)
# ccm = ccm * alpha
# depth = convert_to_white_bg(buffer_dict['depth'][0], write_bg=False)
normal = convert_to_white_bg(buffer_dict['gb_normal'][0], write_bg=False)
sample_target_images.append(image)
# sample_target_ccms.append(ccm)
# sample_target_albedos.append(albedo)
# sample_target_alphas.append(alpha)
# sample_target_depths.append(depth)
sample_target_normals.append(normal)
sample_target_w2cs.append(mvp)
sample_target_camera_pos.append(campos)
target_images.append(torch.stack(sample_target_images, dim=0).permute(0, 3, 1, 2))
# target_albedos.append(torch.stack(sample_target_albedos, dim=0).permute(0, 3, 1, 2))
# target_alphas.append(torch.stack(sample_target_alphas, dim=0).permute(0, 3, 1, 2))
# target_depths.append(torch.stack(sample_target_depths, dim=0).permute(0, 3, 1, 2))
# target_ccms.append(torch.stack(sample_target_ccms, dim=0).permute(0, 3, 1, 2))
target_normals.append(torch.stack(sample_target_normals, dim=0).permute(0, 3, 1, 2))
target_w2cs.append(torch.stack(sample_target_w2cs, dim=0))
target_camera_pos.append(torch.stack(sample_target_camera_pos, dim=0))
del ref_mesh
del material
del mesh_attributes
torch.cuda.empty_cache()
data = {
'target_camera_embedding': torch.stack(target_cam_emebdding, dim=0),
# 'target_albedos': torch.stack(target_albedos, dim=0).detach().cpu(),
'target_images': torch.stack(target_images, dim=0).detach().cpu(), # (batch_size, target_view_num, 3, H, W)
# 'target_alphas': torch.stack(target_alphas, dim=0).detach().cpu(), # (batch_size, target_view_num, 1, H, W)
# 'target_ccms': torch.stack(target_ccms, dim=0).detach().cpu(),
# 'target_depths': torch.stack(target_depths, dim=0).detach().cpu(),
'target_normals': torch.stack(target_normals, dim=0).detach().cpu(),
}
return data
if __name__ == '__main__':
dataset = ObjaverseData(root_dir="/hpc2hdd/JH_DATA/share/yingcongchen/PrivateShareGroup/yingcongchen_datasets/Objaverse_highQuality_singleObj_texture_small_OBJ_Mesh_final",
light_dir="/hpc2hdd/JH_DATA/share/yingcongchen/PrivateShareGroup/yingcongchen_datasets/env_mipmap_large",
target_view_num=4,
fov=30,
camera_distance=5.0,
validation=True,
random_camera=False,
random_elevation=False,
)
dataloader = DataLoader(dataset, batch_size=32, shuffle=False, collate_fn=collate_fn)
index = 0
for batch in tqdm(dataloader):
pass
# batch, view, c, h, w
# target_ccms = batch["target_ccms"][:,:,:3]
# target_images = batch["target_images"]
# target_depths = batch["target_depths"]
# target_normals = batch["target_normals"]
# target_albedos = batch["target_albedos"]
# pass
# torchvision.utils.save_image(target_ccms[2], f"debug_output/target_ccms_{index}.png", normalize=True)
# torchvision.utils.save_image(target_images[2], f"debug_output/target_images_{index}.png", normalize=True)
# torchvision.utils.save_image(target_depths[2], f"debug_output/target_depths_{index}.png", normalize=True)
# torchvision.utils.save_image(target_normals[2], f"debug_output/target_normals_{index}.png", normalize=True)
# torchvision.utils.save_image(target_albedos[2], f"debug_output/target_albedos_{index}.png", normalize=True)
# breakpoint()
# torchvision.utils.save_image(torch.cat([target_images[2], target_albedos[2]], dim=2), f"debug_output/target_images_albedos_{index}.png", normalize=True)
# # exit()
# index += 1
# if index >= 10:
# exit()