Kiss3DGen
/
custom_diffusers
/tests
/pipelines
/controlnet_hunyuandit
/test_controlnet_hunyuandit.py
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc and Tencent Hunyuan Team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import unittest | |
import numpy as np | |
import torch | |
from transformers import AutoTokenizer, BertModel, T5EncoderModel | |
from diffusers import ( | |
AutoencoderKL, | |
DDPMScheduler, | |
HunyuanDiT2DModel, | |
HunyuanDiTControlNetPipeline, | |
) | |
from diffusers.models import HunyuanDiT2DControlNetModel, HunyuanDiT2DMultiControlNetModel | |
from diffusers.utils import load_image | |
from diffusers.utils.testing_utils import ( | |
enable_full_determinism, | |
require_torch_gpu, | |
slow, | |
torch_device, | |
) | |
from diffusers.utils.torch_utils import randn_tensor | |
from ..test_pipelines_common import PipelineTesterMixin | |
enable_full_determinism() | |
class HunyuanDiTControlNetPipelineFastTests(unittest.TestCase, PipelineTesterMixin): | |
pipeline_class = HunyuanDiTControlNetPipeline | |
params = frozenset( | |
[ | |
"prompt", | |
"height", | |
"width", | |
"guidance_scale", | |
"negative_prompt", | |
"prompt_embeds", | |
"negative_prompt_embeds", | |
] | |
) | |
batch_params = frozenset(["prompt", "negative_prompt"]) | |
def get_dummy_components(self): | |
torch.manual_seed(0) | |
transformer = HunyuanDiT2DModel( | |
sample_size=16, | |
num_layers=4, | |
patch_size=2, | |
attention_head_dim=8, | |
num_attention_heads=3, | |
in_channels=4, | |
cross_attention_dim=32, | |
cross_attention_dim_t5=32, | |
pooled_projection_dim=16, | |
hidden_size=24, | |
activation_fn="gelu-approximate", | |
) | |
torch.manual_seed(0) | |
controlnet = HunyuanDiT2DControlNetModel( | |
sample_size=16, | |
transformer_num_layers=4, | |
patch_size=2, | |
attention_head_dim=8, | |
num_attention_heads=3, | |
in_channels=4, | |
cross_attention_dim=32, | |
cross_attention_dim_t5=32, | |
pooled_projection_dim=16, | |
hidden_size=24, | |
activation_fn="gelu-approximate", | |
) | |
torch.manual_seed(0) | |
vae = AutoencoderKL() | |
scheduler = DDPMScheduler() | |
text_encoder = BertModel.from_pretrained("hf-internal-testing/tiny-random-BertModel") | |
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel") | |
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") | |
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") | |
components = { | |
"transformer": transformer.eval(), | |
"vae": vae.eval(), | |
"scheduler": scheduler, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
"text_encoder_2": text_encoder_2, | |
"tokenizer_2": tokenizer_2, | |
"safety_checker": None, | |
"feature_extractor": None, | |
"controlnet": controlnet, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device="cpu").manual_seed(seed) | |
control_image = randn_tensor( | |
(1, 3, 16, 16), | |
generator=generator, | |
device=torch.device(device), | |
dtype=torch.float16, | |
) | |
controlnet_conditioning_scale = 0.5 | |
inputs = { | |
"prompt": "A painting of a squirrel eating a burger", | |
"generator": generator, | |
"num_inference_steps": 2, | |
"guidance_scale": 5.0, | |
"output_type": "np", | |
"control_image": control_image, | |
"controlnet_conditioning_scale": controlnet_conditioning_scale, | |
} | |
return inputs | |
def test_controlnet_hunyuandit(self): | |
components = self.get_dummy_components() | |
pipe = HunyuanDiTControlNetPipeline(**components) | |
pipe = pipe.to(torch_device, dtype=torch.float16) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(torch_device) | |
output = pipe(**inputs) | |
image = output.images | |
image_slice = image[0, -3:, -3:, -1] | |
assert image.shape == (1, 16, 16, 3) | |
expected_slice = np.array( | |
[0.6953125, 0.89208984, 0.59375, 0.5078125, 0.5786133, 0.6035156, 0.5839844, 0.53564453, 0.52246094] | |
) | |
assert ( | |
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
), f"Expected: {expected_slice}, got: {image_slice.flatten()}" | |
def test_inference_batch_single_identical(self): | |
self._test_inference_batch_single_identical( | |
expected_max_diff=1e-3, | |
) | |
def test_sequential_cpu_offload_forward_pass(self): | |
# TODO(YiYi) need to fix later | |
pass | |
def test_sequential_offload_forward_pass_twice(self): | |
# TODO(YiYi) need to fix later | |
pass | |
def test_save_load_optional_components(self): | |
# TODO(YiYi) need to fix later | |
pass | |
class HunyuanDiTControlNetPipelineSlowTests(unittest.TestCase): | |
pipeline_class = HunyuanDiTControlNetPipeline | |
def setUp(self): | |
super().setUp() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def tearDown(self): | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_canny(self): | |
controlnet = HunyuanDiT2DControlNetModel.from_pretrained( | |
"Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Canny", torch_dtype=torch.float16 | |
) | |
pipe = HunyuanDiTControlNetPipeline.from_pretrained( | |
"Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers", controlnet=controlnet, torch_dtype=torch.float16 | |
) | |
pipe.enable_model_cpu_offload() | |
pipe.set_progress_bar_config(disable=None) | |
generator = torch.Generator(device="cpu").manual_seed(0) | |
prompt = "At night, an ancient Chinese-style lion statue stands in front of the hotel, its eyes gleaming as if guarding the building. The background is the hotel entrance at night, with a close-up, eye-level, and centered composition. This photo presents a realistic photographic style, embodies Chinese sculpture culture, and reveals a mysterious atmosphere." | |
n_prompt = "" | |
control_image = load_image( | |
"https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Canny/resolve/main/canny.jpg?download=true" | |
) | |
output = pipe( | |
prompt, | |
negative_prompt=n_prompt, | |
control_image=control_image, | |
controlnet_conditioning_scale=0.5, | |
guidance_scale=5.0, | |
num_inference_steps=2, | |
output_type="np", | |
generator=generator, | |
) | |
image = output.images[0] | |
assert image.shape == (1024, 1024, 3) | |
original_image = image[-3:, -3:, -1].flatten() | |
expected_image = np.array( | |
[0.43652344, 0.4399414, 0.44921875, 0.45043945, 0.45703125, 0.44873047, 0.43579102, 0.44018555, 0.42578125] | |
) | |
assert np.abs(original_image.flatten() - expected_image).max() < 1e-2 | |
def test_pose(self): | |
controlnet = HunyuanDiT2DControlNetModel.from_pretrained( | |
"Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Pose", torch_dtype=torch.float16 | |
) | |
pipe = HunyuanDiTControlNetPipeline.from_pretrained( | |
"Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers", controlnet=controlnet, torch_dtype=torch.float16 | |
) | |
pipe.enable_model_cpu_offload() | |
pipe.set_progress_bar_config(disable=None) | |
generator = torch.Generator(device="cpu").manual_seed(0) | |
prompt = "An Asian woman, dressed in a green top, wearing a purple headscarf and a purple scarf, stands in front of a blackboard. The background is the blackboard. The photo is presented in a close-up, eye-level, and centered composition, adopting a realistic photographic style" | |
n_prompt = "" | |
control_image = load_image( | |
"https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Pose/resolve/main/pose.jpg?download=true" | |
) | |
output = pipe( | |
prompt, | |
negative_prompt=n_prompt, | |
control_image=control_image, | |
controlnet_conditioning_scale=0.5, | |
guidance_scale=5.0, | |
num_inference_steps=2, | |
output_type="np", | |
generator=generator, | |
) | |
image = output.images[0] | |
assert image.shape == (1024, 1024, 3) | |
original_image = image[-3:, -3:, -1].flatten() | |
expected_image = np.array( | |
[0.4091797, 0.4177246, 0.39526367, 0.4194336, 0.40356445, 0.3857422, 0.39208984, 0.40429688, 0.37451172] | |
) | |
assert np.abs(original_image.flatten() - expected_image).max() < 1e-2 | |
def test_depth(self): | |
controlnet = HunyuanDiT2DControlNetModel.from_pretrained( | |
"Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Depth", torch_dtype=torch.float16 | |
) | |
pipe = HunyuanDiTControlNetPipeline.from_pretrained( | |
"Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers", controlnet=controlnet, torch_dtype=torch.float16 | |
) | |
pipe.enable_model_cpu_offload() | |
pipe.set_progress_bar_config(disable=None) | |
generator = torch.Generator(device="cpu").manual_seed(0) | |
prompt = "In the dense forest, a black and white panda sits quietly in green trees and red flowers, surrounded by mountains, rivers, and the ocean. The background is the forest in a bright environment." | |
n_prompt = "" | |
control_image = load_image( | |
"https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Depth/resolve/main/depth.jpg?download=true" | |
) | |
output = pipe( | |
prompt, | |
negative_prompt=n_prompt, | |
control_image=control_image, | |
controlnet_conditioning_scale=0.5, | |
guidance_scale=5.0, | |
num_inference_steps=2, | |
output_type="np", | |
generator=generator, | |
) | |
image = output.images[0] | |
assert image.shape == (1024, 1024, 3) | |
original_image = image[-3:, -3:, -1].flatten() | |
expected_image = np.array( | |
[0.31982422, 0.32177734, 0.30126953, 0.3190918, 0.3100586, 0.31396484, 0.3232422, 0.33544922, 0.30810547] | |
) | |
assert np.abs(original_image.flatten() - expected_image).max() < 1e-2 | |
def test_multi_controlnet(self): | |
controlnet = HunyuanDiT2DControlNetModel.from_pretrained( | |
"Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Canny", torch_dtype=torch.float16 | |
) | |
controlnet = HunyuanDiT2DMultiControlNetModel([controlnet, controlnet]) | |
pipe = HunyuanDiTControlNetPipeline.from_pretrained( | |
"Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers", controlnet=controlnet, torch_dtype=torch.float16 | |
) | |
pipe.enable_model_cpu_offload() | |
pipe.set_progress_bar_config(disable=None) | |
generator = torch.Generator(device="cpu").manual_seed(0) | |
prompt = "At night, an ancient Chinese-style lion statue stands in front of the hotel, its eyes gleaming as if guarding the building. The background is the hotel entrance at night, with a close-up, eye-level, and centered composition. This photo presents a realistic photographic style, embodies Chinese sculpture culture, and reveals a mysterious atmosphere." | |
n_prompt = "" | |
control_image = load_image( | |
"https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Canny/resolve/main/canny.jpg?download=true" | |
) | |
output = pipe( | |
prompt, | |
negative_prompt=n_prompt, | |
control_image=[control_image, control_image], | |
controlnet_conditioning_scale=[0.25, 0.25], | |
guidance_scale=5.0, | |
num_inference_steps=2, | |
output_type="np", | |
generator=generator, | |
) | |
image = output.images[0] | |
assert image.shape == (1024, 1024, 3) | |
original_image = image[-3:, -3:, -1].flatten() | |
expected_image = np.array( | |
[0.43652344, 0.44018555, 0.4494629, 0.44995117, 0.45654297, 0.44848633, 0.43603516, 0.4404297, 0.42626953] | |
) | |
assert np.abs(original_image.flatten() - expected_image).max() < 1e-2 | |