|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import inspect |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import Gemma2Config, Gemma2ForCausalLM, GemmaTokenizer |
|
|
|
from diffusers import AutoencoderDC, FlowMatchEulerDiscreteScheduler, SanaPipeline, SanaTransformer2DModel |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
require_torch_gpu, |
|
slow, |
|
torch_device, |
|
) |
|
|
|
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS |
|
from ..test_pipelines_common import PipelineTesterMixin, to_np |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class SanaPipelineFastTests(PipelineTesterMixin, unittest.TestCase): |
|
pipeline_class = SanaPipeline |
|
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"} |
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS |
|
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS |
|
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS |
|
required_optional_params = frozenset( |
|
[ |
|
"num_inference_steps", |
|
"generator", |
|
"latents", |
|
"return_dict", |
|
"callback_on_step_end", |
|
"callback_on_step_end_tensor_inputs", |
|
] |
|
) |
|
test_xformers_attention = False |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
transformer = SanaTransformer2DModel( |
|
patch_size=1, |
|
in_channels=4, |
|
out_channels=4, |
|
num_layers=1, |
|
num_attention_heads=2, |
|
attention_head_dim=4, |
|
num_cross_attention_heads=2, |
|
cross_attention_head_dim=4, |
|
cross_attention_dim=8, |
|
caption_channels=8, |
|
sample_size=32, |
|
) |
|
|
|
torch.manual_seed(0) |
|
vae = AutoencoderDC( |
|
in_channels=3, |
|
latent_channels=4, |
|
attention_head_dim=2, |
|
encoder_block_types=( |
|
"ResBlock", |
|
"EfficientViTBlock", |
|
), |
|
decoder_block_types=( |
|
"ResBlock", |
|
"EfficientViTBlock", |
|
), |
|
encoder_block_out_channels=(8, 8), |
|
decoder_block_out_channels=(8, 8), |
|
encoder_qkv_multiscales=((), (5,)), |
|
decoder_qkv_multiscales=((), (5,)), |
|
encoder_layers_per_block=(1, 1), |
|
decoder_layers_per_block=[1, 1], |
|
downsample_block_type="conv", |
|
upsample_block_type="interpolate", |
|
decoder_norm_types="rms_norm", |
|
decoder_act_fns="silu", |
|
scaling_factor=0.41407, |
|
) |
|
|
|
torch.manual_seed(0) |
|
scheduler = FlowMatchEulerDiscreteScheduler(shift=7.0) |
|
|
|
torch.manual_seed(0) |
|
text_encoder_config = Gemma2Config( |
|
head_dim=16, |
|
hidden_size=32, |
|
initializer_range=0.02, |
|
intermediate_size=64, |
|
max_position_embeddings=8192, |
|
model_type="gemma2", |
|
num_attention_heads=2, |
|
num_hidden_layers=1, |
|
num_key_value_heads=2, |
|
vocab_size=8, |
|
attn_implementation="eager", |
|
) |
|
text_encoder = Gemma2ForCausalLM(text_encoder_config) |
|
tokenizer = GemmaTokenizer.from_pretrained("hf-internal-testing/dummy-gemma") |
|
|
|
components = { |
|
"transformer": transformer, |
|
"vae": vae, |
|
"scheduler": scheduler, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"prompt": "", |
|
"negative_prompt": "", |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 6.0, |
|
"height": 32, |
|
"width": 32, |
|
"max_sequence_length": 16, |
|
"output_type": "pt", |
|
"complex_human_instruction": None, |
|
} |
|
return inputs |
|
|
|
def test_inference(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = pipe(**inputs)[0] |
|
generated_image = image[0] |
|
|
|
self.assertEqual(generated_image.shape, (3, 32, 32)) |
|
expected_image = torch.randn(3, 32, 32) |
|
max_diff = np.abs(generated_image - expected_image).max() |
|
self.assertLessEqual(max_diff, 1e10) |
|
|
|
def test_callback_inputs(self): |
|
sig = inspect.signature(self.pipeline_class.__call__) |
|
has_callback_tensor_inputs = "callback_on_step_end_tensor_inputs" in sig.parameters |
|
has_callback_step_end = "callback_on_step_end" in sig.parameters |
|
|
|
if not (has_callback_tensor_inputs and has_callback_step_end): |
|
return |
|
|
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
self.assertTrue( |
|
hasattr(pipe, "_callback_tensor_inputs"), |
|
f" {self.pipeline_class} should have `_callback_tensor_inputs` that defines a list of tensor variables its callback function can use as inputs", |
|
) |
|
|
|
def callback_inputs_subset(pipe, i, t, callback_kwargs): |
|
|
|
for tensor_name, tensor_value in callback_kwargs.items(): |
|
|
|
assert tensor_name in pipe._callback_tensor_inputs |
|
|
|
return callback_kwargs |
|
|
|
def callback_inputs_all(pipe, i, t, callback_kwargs): |
|
for tensor_name in pipe._callback_tensor_inputs: |
|
assert tensor_name in callback_kwargs |
|
|
|
|
|
for tensor_name, tensor_value in callback_kwargs.items(): |
|
|
|
assert tensor_name in pipe._callback_tensor_inputs |
|
|
|
return callback_kwargs |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
|
|
|
|
inputs["callback_on_step_end"] = callback_inputs_subset |
|
inputs["callback_on_step_end_tensor_inputs"] = ["latents"] |
|
output = pipe(**inputs)[0] |
|
|
|
|
|
inputs["callback_on_step_end"] = callback_inputs_all |
|
inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs |
|
output = pipe(**inputs)[0] |
|
|
|
def callback_inputs_change_tensor(pipe, i, t, callback_kwargs): |
|
is_last = i == (pipe.num_timesteps - 1) |
|
if is_last: |
|
callback_kwargs["latents"] = torch.zeros_like(callback_kwargs["latents"]) |
|
return callback_kwargs |
|
|
|
inputs["callback_on_step_end"] = callback_inputs_change_tensor |
|
inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs |
|
output = pipe(**inputs)[0] |
|
assert output.abs().sum() < 1e10 |
|
|
|
def test_attention_slicing_forward_pass( |
|
self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3 |
|
): |
|
if not self.test_attention_slicing: |
|
return |
|
|
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
for component in pipe.components.values(): |
|
if hasattr(component, "set_default_attn_processor"): |
|
component.set_default_attn_processor() |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator_device = "cpu" |
|
inputs = self.get_dummy_inputs(generator_device) |
|
output_without_slicing = pipe(**inputs)[0] |
|
|
|
pipe.enable_attention_slicing(slice_size=1) |
|
inputs = self.get_dummy_inputs(generator_device) |
|
output_with_slicing1 = pipe(**inputs)[0] |
|
|
|
pipe.enable_attention_slicing(slice_size=2) |
|
inputs = self.get_dummy_inputs(generator_device) |
|
output_with_slicing2 = pipe(**inputs)[0] |
|
|
|
if test_max_difference: |
|
max_diff1 = np.abs(to_np(output_with_slicing1) - to_np(output_without_slicing)).max() |
|
max_diff2 = np.abs(to_np(output_with_slicing2) - to_np(output_without_slicing)).max() |
|
self.assertLess( |
|
max(max_diff1, max_diff2), |
|
expected_max_diff, |
|
"Attention slicing should not affect the inference results", |
|
) |
|
|
|
|
|
@unittest.skip( |
|
"A very small vocab size is used for fast tests. So, any kind of prompt other than the empty default used in other tests will lead to a embedding lookup error. This test uses a long prompt that causes the error." |
|
) |
|
def test_inference_batch_consistent(self): |
|
pass |
|
|
|
@unittest.skip( |
|
"A very small vocab size is used for fast tests. So, any kind of prompt other than the empty default used in other tests will lead to a embedding lookup error. This test uses a long prompt that causes the error." |
|
) |
|
def test_inference_batch_single_identical(self): |
|
pass |
|
|
|
def test_float16_inference(self): |
|
|
|
super().test_float16_inference(expected_max_diff=0.08) |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class SanaPipelineIntegrationTests(unittest.TestCase): |
|
prompt = "A painting of a squirrel eating a burger." |
|
|
|
def setUp(self): |
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_sana_1024(self): |
|
generator = torch.Generator("cpu").manual_seed(0) |
|
|
|
pipe = SanaPipeline.from_pretrained( |
|
"Efficient-Large-Model/Sana_1600M_1024px_diffusers", torch_dtype=torch.float16 |
|
) |
|
pipe.enable_model_cpu_offload() |
|
|
|
image = pipe( |
|
prompt=self.prompt, |
|
height=1024, |
|
width=1024, |
|
generator=generator, |
|
num_inference_steps=20, |
|
output_type="np", |
|
).images[0] |
|
|
|
image = image.flatten() |
|
output_slice = np.concatenate((image[:16], image[-16:])) |
|
|
|
|
|
expected_slice = np.array([0.0427, 0.0789, 0.0662, 0.0464, 0.082, 0.0574, 0.0535, 0.0886, 0.0647, 0.0549, 0.0872, 0.0605, 0.0593, 0.0942, 0.0674, 0.0581, 0.0076, 0.0168, 0.0027, 0.0063, 0.0159, 0.0, 0.0071, 0.0198, 0.0034, 0.0105, 0.0212, 0.0, 0.0, 0.0166, 0.0042, 0.0125]) |
|
|
|
|
|
self.assertTrue(np.allclose(output_slice, expected_slice, atol=1e-4)) |
|
|
|
def test_sana_512(self): |
|
generator = torch.Generator("cpu").manual_seed(0) |
|
|
|
pipe = SanaPipeline.from_pretrained( |
|
"Efficient-Large-Model/Sana_1600M_512px_diffusers", torch_dtype=torch.float16 |
|
) |
|
pipe.enable_model_cpu_offload() |
|
|
|
image = pipe( |
|
prompt=self.prompt, |
|
height=512, |
|
width=512, |
|
generator=generator, |
|
num_inference_steps=20, |
|
output_type="np", |
|
).images[0] |
|
|
|
image = image.flatten() |
|
output_slice = np.concatenate((image[:16], image[-16:])) |
|
|
|
|
|
expected_slice = np.array([0.0803, 0.0774, 0.1108, 0.0872, 0.093, 0.1118, 0.0952, 0.0898, 0.1038, 0.0818, 0.0754, 0.0894, 0.074, 0.0691, 0.0906, 0.0671, 0.0154, 0.0254, 0.0203, 0.0178, 0.0283, 0.0193, 0.0215, 0.0273, 0.0188, 0.0212, 0.0273, 0.0151, 0.0061, 0.0244, 0.0212, 0.0259]) |
|
|
|
|
|
self.assertTrue(np.allclose(output_slice, expected_slice, atol=1e-4)) |
|
|