JiantaoLin
commited on
Commit
Β·
23ca1bc
1
Parent(s):
3c4968d
new
Browse files- app.py +26 -26
- app_demo.py +0 -384
app.py
CHANGED
@@ -429,42 +429,42 @@ with gr.Blocks(css="""
|
|
429 |
|
430 |
# file_output1 = gr.File()
|
431 |
|
432 |
-
with gr.TabItem('Image-to-3D', id='tab_image_to_3d'):
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
|
437 |
-
|
438 |
|
439 |
-
|
440 |
|
441 |
-
|
442 |
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
|
450 |
-
|
451 |
|
452 |
-
|
453 |
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
|
461 |
# Image2
|
462 |
-
btn_img2mesh_preprocess.click(fn=image2mesh_preprocess_, inputs=[image, seed2], outputs=[output_image2, image_caption])
|
463 |
|
464 |
-
btn_img2mesh_main.click(fn=image2mesh_main_, inputs=[output_image2, image_caption, seed2, strength1, strength2, enable_redux, use_controlnet], outputs=[output_image3, output_video2, download_2]).then(
|
465 |
-
|
466 |
-
|
467 |
-
)
|
468 |
|
469 |
|
470 |
# btn_download1.click(fn=save_cached_mesh, inputs=[], outputs=file_output1)
|
|
|
429 |
|
430 |
# file_output1 = gr.File()
|
431 |
|
432 |
+
# with gr.TabItem('Image-to-3D', id='tab_image_to_3d'):
|
433 |
+
# with gr.Row():
|
434 |
+
# with gr.Column(scale=1):
|
435 |
+
# image = gr.Image(label="Input Image", type="pil")
|
436 |
|
437 |
+
# seed2 = gr.Number(value=10, label="Seed (0 for random)")
|
438 |
|
439 |
+
# btn_img2mesh_preprocess = gr.Button("Preprocess Image")
|
440 |
|
441 |
+
# image_caption = gr.Textbox(value="", label="Image Caption", placeholder="caption will be generated here base on your input image. You can also edit this caption", lines=4, interactive=True)
|
442 |
|
443 |
+
# with gr.Accordion(label="Extra Settings", open=False):
|
444 |
+
# output_image2 = gr.Image(label="Generated image", interactive=False)
|
445 |
+
# strength1 = gr.Slider(minimum=0, maximum=1.0, step=0.01, value=0.5, label="redux strength")
|
446 |
+
# strength2 = gr.Slider(minimum=0, maximum=1.0, step=0.01, value=0.95, label="denoise strength")
|
447 |
+
# enable_redux = gr.Checkbox(label="enable redux", value=True)
|
448 |
+
# use_controlnet = gr.Checkbox(label="enable controlnet", value=True)
|
449 |
|
450 |
+
# btn_img2mesh_main = gr.Button("Generate Mesh")
|
451 |
|
452 |
+
# with gr.Column(scale=1):
|
453 |
|
454 |
+
# # output_mesh2 = gr.Model3D(label="Generated Mesh", interactive=False)
|
455 |
+
# output_image3 = gr.Image(label="Final Bundle Image", interactive=False)
|
456 |
+
# output_video2 = gr.Video(label="Generated Video", interactive=False, loop=True, autoplay=True)
|
457 |
+
# # btn_download2 = gr.Button("Download Mesh")
|
458 |
+
# download_2 = gr.DownloadButton(label="Download mesh", interactive=False)
|
459 |
+
# # file_output2 = gr.File()
|
460 |
|
461 |
# Image2
|
462 |
+
# btn_img2mesh_preprocess.click(fn=image2mesh_preprocess_, inputs=[image, seed2], outputs=[output_image2, image_caption])
|
463 |
|
464 |
+
# btn_img2mesh_main.click(fn=image2mesh_main_, inputs=[output_image2, image_caption, seed2, strength1, strength2, enable_redux, use_controlnet], outputs=[output_image3, output_video2, download_2]).then(
|
465 |
+
# lambda: gr.Button(interactive=True),
|
466 |
+
# outputs=[download_2],
|
467 |
+
# )
|
468 |
|
469 |
|
470 |
# btn_download1.click(fn=save_cached_mesh, inputs=[], outputs=file_output1)
|
app_demo.py
DELETED
@@ -1,384 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import os
|
3 |
-
import subprocess
|
4 |
-
import shlex
|
5 |
-
import spaces
|
6 |
-
import torch
|
7 |
-
access_token = os.getenv("HUGGINGFACE_TOKEN")
|
8 |
-
subprocess.run(
|
9 |
-
shlex.split(
|
10 |
-
"pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py310_cu121_pyt240/download.html"
|
11 |
-
)
|
12 |
-
)
|
13 |
-
|
14 |
-
subprocess.run(
|
15 |
-
shlex.split(
|
16 |
-
"pip install ./extension/nvdiffrast-0.3.1+torch-py3-none-any.whl --force-reinstall --no-deps"
|
17 |
-
)
|
18 |
-
)
|
19 |
-
|
20 |
-
subprocess.run(
|
21 |
-
shlex.split(
|
22 |
-
"pip install ./extension/renderutils_plugin-0.1.0-cp310-cp310-linux_x86_64.whl --force-reinstall --no-deps"
|
23 |
-
)
|
24 |
-
)
|
25 |
-
def install_cuda_toolkit():
|
26 |
-
# CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run"
|
27 |
-
# CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run"
|
28 |
-
CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.1.0/local_installers/cuda_12.1.0_530.30.02_linux.run"
|
29 |
-
CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
|
30 |
-
subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
|
31 |
-
subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
|
32 |
-
subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])
|
33 |
-
|
34 |
-
os.environ["CUDA_HOME"] = "/usr/local/cuda"
|
35 |
-
os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
|
36 |
-
os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
|
37 |
-
os.environ["CUDA_HOME"],
|
38 |
-
"" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
|
39 |
-
)
|
40 |
-
# Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range
|
41 |
-
os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"
|
42 |
-
print("==> finfish install")
|
43 |
-
install_cuda_toolkit()
|
44 |
-
@spaces.GPU
|
45 |
-
def check_gpu():
|
46 |
-
os.environ['CUDA_HOME'] = '/usr/local/cuda-12.1'
|
47 |
-
os.environ['PATH'] += ':/usr/local/cuda-12.1/bin'
|
48 |
-
# os.environ['LD_LIBRARY_PATH'] += ':/usr/local/cuda-12.1/lib64'
|
49 |
-
os.environ['LD_LIBRARY_PATH'] = "/usr/local/cuda-12.1/lib64:" + os.environ.get('LD_LIBRARY_PATH', '')
|
50 |
-
subprocess.run(['nvidia-smi']) # ζ΅θ― CUDA ζ―ε¦ε―η¨
|
51 |
-
print(f"torch.cuda.is_available:{torch.cuda.is_available()}")
|
52 |
-
check_gpu()
|
53 |
-
|
54 |
-
from PIL import Image
|
55 |
-
from einops import rearrange
|
56 |
-
from diffusers import FluxPipeline
|
57 |
-
from models.lrm.utils.camera_util import get_flux_input_cameras
|
58 |
-
from models.lrm.utils.infer_util import save_video
|
59 |
-
from models.lrm.utils.mesh_util import save_obj, save_obj_with_mtl
|
60 |
-
from models.lrm.utils.render_utils import rotate_x, rotate_y
|
61 |
-
from models.lrm.utils.train_util import instantiate_from_config
|
62 |
-
from models.ISOMER.reconstruction_func import reconstruction
|
63 |
-
from models.ISOMER.projection_func import projection
|
64 |
-
import os
|
65 |
-
from einops import rearrange
|
66 |
-
from omegaconf import OmegaConf
|
67 |
-
import torch
|
68 |
-
import numpy as np
|
69 |
-
import trimesh
|
70 |
-
import torchvision
|
71 |
-
import torch.nn.functional as F
|
72 |
-
from PIL import Image
|
73 |
-
from torchvision import transforms
|
74 |
-
from torchvision.transforms import v2
|
75 |
-
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
|
76 |
-
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
|
77 |
-
from diffusers import FluxPipeline
|
78 |
-
from pytorch_lightning import seed_everything
|
79 |
-
import os
|
80 |
-
from huggingface_hub import hf_hub_download
|
81 |
-
|
82 |
-
|
83 |
-
from utils.tool import NormalTransfer, get_background, get_render_cameras_video, load_mipmap, render_frames
|
84 |
-
|
85 |
-
device_0 = "cuda"
|
86 |
-
device_1 = "cuda"
|
87 |
-
resolution = 512
|
88 |
-
save_dir = "./outputs"
|
89 |
-
normal_transfer = NormalTransfer()
|
90 |
-
isomer_azimuths = torch.from_numpy(np.array([0, 90, 180, 270])).float().to(device_1)
|
91 |
-
isomer_elevations = torch.from_numpy(np.array([5, 5, 5, 5])).float().to(device_1)
|
92 |
-
isomer_radius = 4.5
|
93 |
-
isomer_geo_weights = torch.from_numpy(np.array([1, 0.9, 1, 0.9])).float().to(device_1)
|
94 |
-
isomer_color_weights = torch.from_numpy(np.array([1, 0.5, 1, 0.5])).float().to(device_1)
|
95 |
-
|
96 |
-
# model initialization and loading
|
97 |
-
# flux
|
98 |
-
# # taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.bfloat16).to(device_0)
|
99 |
-
# # good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=torch.bfloat16, token=access_token).to(device_0)
|
100 |
-
# flux_pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16, token=access_token).to(device=device_0, dtype=torch.bfloat16)
|
101 |
-
# # flux_pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16, vae=taef1, token=access_token).to(device_0)
|
102 |
-
# flux_lora_ckpt_path = hf_hub_download(repo_id="LTT/xxx-ckpt", filename="rgb_normal_large.safetensors", repo_type="model", token=access_token)
|
103 |
-
# flux_pipe.load_lora_weights(flux_lora_ckpt_path)
|
104 |
-
# flux_pipe.to(device=device_0, dtype=torch.bfloat16)
|
105 |
-
# torch.cuda.empty_cache()
|
106 |
-
# flux_pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(flux_pipe)
|
107 |
-
|
108 |
-
|
109 |
-
# lrm
|
110 |
-
config = OmegaConf.load("./models/lrm/config/PRM_inference.yaml")
|
111 |
-
model_config = config.model_config
|
112 |
-
infer_config = config.infer_config
|
113 |
-
model = instantiate_from_config(model_config)
|
114 |
-
model_ckpt_path = hf_hub_download(repo_id="LTT/PRM", filename="final_ckpt.ckpt", repo_type="model")
|
115 |
-
state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict']
|
116 |
-
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.')}
|
117 |
-
model.load_state_dict(state_dict, strict=True)
|
118 |
-
model = model.to(device_1)
|
119 |
-
torch.cuda.empty_cache()
|
120 |
-
@spaces.GPU
|
121 |
-
def lrm_reconstructions(image, input_cameras, save_path=None, name="temp", export_texmap=False, if_save_video=False):
|
122 |
-
images = image.unsqueeze(0).to(device_1)
|
123 |
-
images = v2.functional.resize(images, 512, interpolation=3, antialias=True).clamp(0, 1)
|
124 |
-
# breakpoint()
|
125 |
-
with torch.no_grad():
|
126 |
-
# get triplane
|
127 |
-
planes = model.forward_planes(images, input_cameras)
|
128 |
-
|
129 |
-
mesh_path_idx = os.path.join(save_path, f'{name}.obj')
|
130 |
-
|
131 |
-
mesh_out = model.extract_mesh(
|
132 |
-
planes,
|
133 |
-
use_texture_map=export_texmap,
|
134 |
-
**infer_config,
|
135 |
-
)
|
136 |
-
if export_texmap:
|
137 |
-
vertices, faces, uvs, mesh_tex_idx, tex_map = mesh_out
|
138 |
-
save_obj_with_mtl(
|
139 |
-
vertices.data.cpu().numpy(),
|
140 |
-
uvs.data.cpu().numpy(),
|
141 |
-
faces.data.cpu().numpy(),
|
142 |
-
mesh_tex_idx.data.cpu().numpy(),
|
143 |
-
tex_map.permute(1, 2, 0).data.cpu().numpy(),
|
144 |
-
mesh_path_idx,
|
145 |
-
)
|
146 |
-
else:
|
147 |
-
vertices, faces, vertex_colors = mesh_out
|
148 |
-
save_obj(vertices, faces, vertex_colors, mesh_path_idx)
|
149 |
-
print(f"Mesh saved to {mesh_path_idx}")
|
150 |
-
|
151 |
-
render_size = 512
|
152 |
-
if if_save_video:
|
153 |
-
video_path_idx = os.path.join(save_path, f'{name}.mp4')
|
154 |
-
render_size = infer_config.render_resolution
|
155 |
-
ENV = load_mipmap("models/lrm/env_mipmap/6")
|
156 |
-
materials = (0.0,0.9)
|
157 |
-
|
158 |
-
all_mv, all_mvp, all_campos = get_render_cameras_video(
|
159 |
-
batch_size=1,
|
160 |
-
M=24,
|
161 |
-
radius=4.5,
|
162 |
-
elevation=(90, 60.0),
|
163 |
-
is_flexicubes=True,
|
164 |
-
fov=30
|
165 |
-
)
|
166 |
-
|
167 |
-
frames, albedos, pbr_spec_lights, pbr_diffuse_lights, normals, alphas = render_frames(
|
168 |
-
model,
|
169 |
-
planes,
|
170 |
-
render_cameras=all_mvp,
|
171 |
-
camera_pos=all_campos,
|
172 |
-
env=ENV,
|
173 |
-
materials=materials,
|
174 |
-
render_size=render_size,
|
175 |
-
chunk_size=20,
|
176 |
-
is_flexicubes=True,
|
177 |
-
)
|
178 |
-
normals = (torch.nn.functional.normalize(normals) + 1) / 2
|
179 |
-
normals = normals * alphas + (1-alphas)
|
180 |
-
all_frames = torch.cat([frames, albedos, pbr_spec_lights, pbr_diffuse_lights, normals], dim=3)
|
181 |
-
|
182 |
-
save_video(
|
183 |
-
all_frames,
|
184 |
-
video_path_idx,
|
185 |
-
fps=30,
|
186 |
-
)
|
187 |
-
print(f"Video saved to {video_path_idx}")
|
188 |
-
|
189 |
-
return vertices, faces
|
190 |
-
|
191 |
-
|
192 |
-
def local_normal_global_transform(local_normal_images, azimuths_deg, elevations_deg):
|
193 |
-
if local_normal_images.min() >= 0:
|
194 |
-
local_normal = local_normal_images.float() * 2 - 1
|
195 |
-
else:
|
196 |
-
local_normal = local_normal_images.float()
|
197 |
-
global_normal = normal_transfer.trans_local_2_global(local_normal, azimuths_deg, elevations_deg, radius=4.5, for_lotus=False)
|
198 |
-
global_normal[...,0] *= -1
|
199 |
-
global_normal = (global_normal + 1) / 2
|
200 |
-
global_normal = global_normal.permute(0, 3, 1, 2)
|
201 |
-
return global_normal
|
202 |
-
|
203 |
-
# ηζε€θ§εΎεΎε
|
204 |
-
@spaces.GPU(duration=120)
|
205 |
-
def generate_multi_view_images(prompt, seed):
|
206 |
-
# torch.cuda.empty_cache()
|
207 |
-
# generator = torch.manual_seed(seed)
|
208 |
-
generator = torch.Generator().manual_seed(seed)
|
209 |
-
with torch.no_grad():
|
210 |
-
img = flux_pipe(
|
211 |
-
prompt=prompt,
|
212 |
-
num_inference_steps=5,
|
213 |
-
guidance_scale=3.5,
|
214 |
-
num_images_per_prompt=1,
|
215 |
-
width=resolution * 2,
|
216 |
-
height=resolution * 1,
|
217 |
-
output_type='np',
|
218 |
-
generator=generator,
|
219 |
-
).images
|
220 |
-
# for img in flux_pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
221 |
-
# prompt=prompt,
|
222 |
-
# guidance_scale=3.5,
|
223 |
-
# num_inference_steps=4,
|
224 |
-
# width=resolution * 4,
|
225 |
-
# height=resolution * 2,
|
226 |
-
# generator=generator,
|
227 |
-
# output_type="np",
|
228 |
-
# good_vae=good_vae,
|
229 |
-
# ):
|
230 |
-
# pass
|
231 |
-
# θΏεζη»ηεΎεεη§εοΌιθΏε€ι¨θ°η¨ε€ηοΌ
|
232 |
-
return img
|
233 |
-
|
234 |
-
# ιε»Ί 3D 樑ε
|
235 |
-
@spaces.GPU
|
236 |
-
def reconstruct_3d_model(images, prompt):
|
237 |
-
global model
|
238 |
-
model.init_flexicubes_geometry(device_1, fovy=50.0)
|
239 |
-
model = model.eval()
|
240 |
-
rgb_normal_grid = images
|
241 |
-
save_dir_path = os.path.join(save_dir, prompt.replace(" ", "_"))
|
242 |
-
os.makedirs(save_dir_path, exist_ok=True)
|
243 |
-
|
244 |
-
images = torch.from_numpy(rgb_normal_grid).squeeze(0).permute(2, 0, 1).contiguous().float() # (3, 1024, 2048)
|
245 |
-
images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=2, m=4) # (8, 3, 512, 512)
|
246 |
-
rgb_multi_view = images[:4, :3, :, :]
|
247 |
-
normal_multi_view = images[4:, :3, :, :]
|
248 |
-
multi_view_mask = get_background(normal_multi_view)
|
249 |
-
rgb_multi_view = rgb_multi_view * rgb_multi_view + (1-multi_view_mask)
|
250 |
-
input_cameras = get_flux_input_cameras(batch_size=1, radius=4.2, fov=30).to(device_1)
|
251 |
-
vertices, faces = lrm_reconstructions(rgb_multi_view, input_cameras, save_path=save_dir_path, name='lrm', export_texmap=False, if_save_video=True)
|
252 |
-
# local normal to global normal
|
253 |
-
|
254 |
-
global_normal = local_normal_global_transform(normal_multi_view.permute(0, 2, 3, 1), isomer_azimuths, isomer_elevations)
|
255 |
-
global_normal = global_normal * multi_view_mask + (1-multi_view_mask)
|
256 |
-
|
257 |
-
global_normal = global_normal.permute(0,2,3,1)
|
258 |
-
rgb_multi_view = rgb_multi_view.permute(0,2,3,1)
|
259 |
-
multi_view_mask = multi_view_mask.permute(0,2,3,1).squeeze(-1)
|
260 |
-
vertices = torch.from_numpy(vertices).to(device_1)
|
261 |
-
faces = torch.from_numpy(faces).to(device_1)
|
262 |
-
vertices = vertices @ rotate_x(np.pi / 2, device=vertices.device)[:3, :3]
|
263 |
-
vertices = vertices @ rotate_y(np.pi / 2, device=vertices.device)[:3, :3]
|
264 |
-
|
265 |
-
# global_normal: B,H,W,3
|
266 |
-
# multi_view_mask: B,H,W
|
267 |
-
# rgb_multi_view: B,H,W,3
|
268 |
-
|
269 |
-
meshes = reconstruction(
|
270 |
-
normal_pils=global_normal,
|
271 |
-
masks=multi_view_mask,
|
272 |
-
weights=isomer_geo_weights,
|
273 |
-
fov=30,
|
274 |
-
radius=isomer_radius,
|
275 |
-
camera_angles_azi=isomer_azimuths,
|
276 |
-
camera_angles_ele=isomer_elevations,
|
277 |
-
expansion_weight_stage1=0.1,
|
278 |
-
init_type="file",
|
279 |
-
init_verts=vertices,
|
280 |
-
init_faces=faces,
|
281 |
-
stage1_steps=0,
|
282 |
-
stage2_steps=50,
|
283 |
-
start_edge_len_stage1=0.1,
|
284 |
-
end_edge_len_stage1=0.02,
|
285 |
-
start_edge_len_stage2=0.02,
|
286 |
-
end_edge_len_stage2=0.005,
|
287 |
-
)
|
288 |
-
|
289 |
-
|
290 |
-
save_glb_addr = projection(
|
291 |
-
meshes,
|
292 |
-
masks=multi_view_mask,
|
293 |
-
images=rgb_multi_view,
|
294 |
-
azimuths=isomer_azimuths,
|
295 |
-
elevations=isomer_elevations,
|
296 |
-
weights=isomer_color_weights,
|
297 |
-
fov=30,
|
298 |
-
radius=isomer_radius,
|
299 |
-
save_dir=f"{save_dir_path}/ISOMER/",
|
300 |
-
)
|
301 |
-
|
302 |
-
return save_glb_addr
|
303 |
-
|
304 |
-
# Gradio ζ₯ε£ε½ζ°
|
305 |
-
@spaces.GPU
|
306 |
-
def gradio_pipeline(prompt, seed):
|
307 |
-
import ctypes
|
308 |
-
# ζΎεΌε θ½½ libnvrtc.so.12
|
309 |
-
cuda_lib_path = "/usr/local/cuda-12.1/lib64/libnvrtc.so.12"
|
310 |
-
try:
|
311 |
-
ctypes.CDLL(cuda_lib_path, mode=ctypes.RTLD_GLOBAL)
|
312 |
-
print(f"Successfully preloaded {cuda_lib_path}")
|
313 |
-
except OSError as e:
|
314 |
-
print(f"Failed to preload {cuda_lib_path}: {e}")
|
315 |
-
# ηζε€θ§εΎεΎε
|
316 |
-
# rgb_normal_grid = generate_multi_view_images(prompt, seed)
|
317 |
-
rgb_normal_grid = np.load("rgb_normal_grid.npy")
|
318 |
-
image_preview = Image.fromarray((rgb_normal_grid[0] * 255).astype(np.uint8))
|
319 |
-
|
320 |
-
# 3d reconstruction
|
321 |
-
|
322 |
-
|
323 |
-
# ιε»Ί 3D 樑εεΉΆθΏε glb θ·―εΎ
|
324 |
-
save_glb_addr = reconstruct_3d_model(rgb_normal_grid, prompt)
|
325 |
-
# save_glb_addr = None
|
326 |
-
return image_preview, save_glb_addr
|
327 |
-
|
328 |
-
# Gradio Blocks εΊη¨
|
329 |
-
with gr.Blocks() as demo:
|
330 |
-
with gr.Row(variant="panel"):
|
331 |
-
# ε·¦δΎ§θΎε
₯εΊε
|
332 |
-
with gr.Column():
|
333 |
-
with gr.Row():
|
334 |
-
prompt_input = gr.Textbox(
|
335 |
-
label="Enter Prompt",
|
336 |
-
placeholder="Describe your 3D model...",
|
337 |
-
lines=2,
|
338 |
-
elem_id="prompt_input"
|
339 |
-
)
|
340 |
-
|
341 |
-
with gr.Row():
|
342 |
-
sample_seed = gr.Number(value=42, label="Seed Value", precision=0)
|
343 |
-
|
344 |
-
with gr.Row():
|
345 |
-
submit = gr.Button("Generate", elem_id="generate", variant="primary")
|
346 |
-
|
347 |
-
with gr.Row(variant="panel"):
|
348 |
-
gr.Markdown("Examples:")
|
349 |
-
gr.Examples(
|
350 |
-
examples=[
|
351 |
-
["a castle on a hill"],
|
352 |
-
["an owl wearing a hat"],
|
353 |
-
["a futuristic car"]
|
354 |
-
],
|
355 |
-
inputs=[prompt_input],
|
356 |
-
label="Prompt Examples"
|
357 |
-
)
|
358 |
-
|
359 |
-
# ε³δΎ§θΎεΊεΊε
|
360 |
-
with gr.Column():
|
361 |
-
with gr.Row():
|
362 |
-
rgb_normal_grid_image = gr.Image(
|
363 |
-
label="RGB Normal Grid",
|
364 |
-
type="pil",
|
365 |
-
interactive=False
|
366 |
-
)
|
367 |
-
|
368 |
-
with gr.Row():
|
369 |
-
with gr.Tab("GLB"):
|
370 |
-
output_glb_model = gr.Model3D(
|
371 |
-
label="Generated 3D Model (GLB Format)",
|
372 |
-
interactive=False
|
373 |
-
)
|
374 |
-
gr.Markdown("Download the model for proper visualization.")
|
375 |
-
|
376 |
-
# ε€ηι»θΎ
|
377 |
-
submit.click(
|
378 |
-
fn=gradio_pipeline, inputs=[prompt_input, sample_seed],
|
379 |
-
outputs=[rgb_normal_grid_image, output_glb_model]
|
380 |
-
)
|
381 |
-
|
382 |
-
# ε―ε¨εΊη¨
|
383 |
-
# demo.queue(max_size=10)
|
384 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|