Update app.py
Browse files
app.py
CHANGED
@@ -96,14 +96,14 @@ isomer_color_weights = torch.from_numpy(np.array([1, 0.5, 1, 0.5])).float().to(d
|
|
96 |
|
97 |
# model initialization and loading
|
98 |
# flux
|
99 |
-
# taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.bfloat16).to(device_0)
|
100 |
-
# good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=torch.bfloat16, token=access_token).to(device_0)
|
101 |
-
flux_pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16, token=access_token).to(device=device_0, dtype=torch.bfloat16)
|
102 |
-
# flux_pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16, vae=taef1, token=access_token).to(device_0)
|
103 |
-
flux_lora_ckpt_path = hf_hub_download(repo_id="LTT/xxx-ckpt", filename="rgb_normal_large.safetensors", repo_type="model", token=access_token)
|
104 |
-
flux_pipe.load_lora_weights(flux_lora_ckpt_path)
|
105 |
-
flux_pipe.to(device=device_0, dtype=torch.bfloat16)
|
106 |
-
torch.cuda.empty_cache()
|
107 |
# flux_pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(flux_pipe)
|
108 |
|
109 |
|
@@ -306,7 +306,7 @@ def reconstruct_3d_model(images, prompt):
|
|
306 |
@spaces.GPU
|
307 |
def gradio_pipeline(prompt, seed):
|
308 |
# 生成多视图图像
|
309 |
-
rgb_normal_grid = generate_multi_view_images(prompt, seed)
|
310 |
# rgb_normal_grid = np.load("rgb_normal_grid.npy")
|
311 |
image_preview = Image.fromarray((rgb_normal_grid[0] * 255).astype(np.uint8))
|
312 |
|
@@ -314,8 +314,8 @@ def gradio_pipeline(prompt, seed):
|
|
314 |
|
315 |
|
316 |
# 重建 3D 模型并返回 glb 路径
|
317 |
-
|
318 |
-
save_glb_addr = None
|
319 |
return image_preview, save_glb_addr
|
320 |
|
321 |
# Gradio Blocks 应用
|
|
|
96 |
|
97 |
# model initialization and loading
|
98 |
# flux
|
99 |
+
# # taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.bfloat16).to(device_0)
|
100 |
+
# # good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=torch.bfloat16, token=access_token).to(device_0)
|
101 |
+
# flux_pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16, token=access_token).to(device=device_0, dtype=torch.bfloat16)
|
102 |
+
# # flux_pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16, vae=taef1, token=access_token).to(device_0)
|
103 |
+
# flux_lora_ckpt_path = hf_hub_download(repo_id="LTT/xxx-ckpt", filename="rgb_normal_large.safetensors", repo_type="model", token=access_token)
|
104 |
+
# flux_pipe.load_lora_weights(flux_lora_ckpt_path)
|
105 |
+
# flux_pipe.to(device=device_0, dtype=torch.bfloat16)
|
106 |
+
# torch.cuda.empty_cache()
|
107 |
# flux_pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(flux_pipe)
|
108 |
|
109 |
|
|
|
306 |
@spaces.GPU
|
307 |
def gradio_pipeline(prompt, seed):
|
308 |
# 生成多视图图像
|
309 |
+
# rgb_normal_grid = generate_multi_view_images(prompt, seed)
|
310 |
# rgb_normal_grid = np.load("rgb_normal_grid.npy")
|
311 |
image_preview = Image.fromarray((rgb_normal_grid[0] * 255).astype(np.uint8))
|
312 |
|
|
|
314 |
|
315 |
|
316 |
# 重建 3D 模型并返回 glb 路径
|
317 |
+
save_glb_addr = reconstruct_3d_model(rgb_normal_grid, prompt)
|
318 |
+
# save_glb_addr = None
|
319 |
return image_preview, save_glb_addr
|
320 |
|
321 |
# Gradio Blocks 应用
|