Last commit not found
# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# | |
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual | |
# property and proprietary rights in and to this material, related | |
# documentation and any modifications thereto. Any use, reproduction, | |
# disclosure or distribution of this material and related documentation | |
# without an express license agreement from NVIDIA CORPORATION or | |
# its affiliates is strictly prohibited. | |
import os | |
import numpy as np | |
import torch | |
from . import obj | |
from . import util | |
###################################################################################### | |
# Base mesh class | |
###################################################################################### | |
class Mesh: | |
def __init__(self, v_pos=None, t_pos_idx=None, v_nrm=None, t_nrm_idx=None, v_tex=None, t_tex_idx=None, v_tng=None, t_tng_idx=None, material=None, base=None): | |
self.v_pos = v_pos | |
self.v_nrm = v_nrm | |
self.v_tex = v_tex | |
self.v_tng = v_tng | |
self.t_pos_idx = t_pos_idx | |
self.t_nrm_idx = t_nrm_idx | |
self.t_tex_idx = t_tex_idx | |
self.t_tng_idx = t_tng_idx | |
self.material = material | |
if base is not None: | |
self.copy_none(base) | |
def copy_none(self, other): | |
if self.v_pos is None: | |
self.v_pos = other.v_pos | |
if self.t_pos_idx is None: | |
self.t_pos_idx = other.t_pos_idx | |
if self.v_nrm is None: | |
self.v_nrm = other.v_nrm | |
if self.t_nrm_idx is None: | |
self.t_nrm_idx = other.t_nrm_idx | |
if self.v_tex is None: | |
self.v_tex = other.v_tex | |
if self.t_tex_idx is None: | |
self.t_tex_idx = other.t_tex_idx | |
if self.v_tng is None: | |
self.v_tng = other.v_tng | |
if self.t_tng_idx is None: | |
self.t_tng_idx = other.t_tng_idx | |
if self.material is None: | |
self.material = other.material | |
def clone(self): | |
out = Mesh(base=self) | |
if out.v_pos is not None: | |
out.v_pos = out.v_pos.clone().detach() | |
if out.t_pos_idx is not None: | |
out.t_pos_idx = out.t_pos_idx.clone().detach() | |
if out.v_nrm is not None: | |
out.v_nrm = out.v_nrm.clone().detach() | |
if out.t_nrm_idx is not None: | |
out.t_nrm_idx = out.t_nrm_idx.clone().detach() | |
if out.v_tex is not None: | |
out.v_tex = out.v_tex.clone().detach() | |
if out.t_tex_idx is not None: | |
out.t_tex_idx = out.t_tex_idx.clone().detach() | |
if out.v_tng is not None: | |
out.v_tng = out.v_tng.clone().detach() | |
if out.t_tng_idx is not None: | |
out.t_tng_idx = out.t_tng_idx.clone().detach() | |
return out | |
###################################################################################### | |
# Mesh loeading helper | |
###################################################################################### | |
def load_mesh(filename, mtl_override=None): | |
name, ext = os.path.splitext(filename) | |
if ext == ".obj": | |
return obj.load_obj(filename, clear_ks=True, mtl_override=mtl_override) | |
assert False, "Invalid mesh file extension" | |
###################################################################################### | |
# Compute AABB | |
###################################################################################### | |
def aabb(mesh): | |
return torch.min(mesh.v_pos, dim=0).values, torch.max(mesh.v_pos, dim=0).values | |
###################################################################################### | |
# Compute unique edge list from attribute/vertex index list | |
###################################################################################### | |
def compute_edges(attr_idx, return_inverse=False): | |
with torch.no_grad(): | |
# Create all edges, packed by triangle | |
all_edges = torch.cat(( | |
torch.stack((attr_idx[:, 0], attr_idx[:, 1]), dim=-1), | |
torch.stack((attr_idx[:, 1], attr_idx[:, 2]), dim=-1), | |
torch.stack((attr_idx[:, 2], attr_idx[:, 0]), dim=-1), | |
), dim=-1).view(-1, 2) | |
# Swap edge order so min index is always first | |
order = (all_edges[:, 0] > all_edges[:, 1]).long().unsqueeze(dim=1) | |
sorted_edges = torch.cat(( | |
torch.gather(all_edges, 1, order), | |
torch.gather(all_edges, 1, 1 - order) | |
), dim=-1) | |
# Eliminate duplicates and return inverse mapping | |
return torch.unique(sorted_edges, dim=0, return_inverse=return_inverse) | |
###################################################################################### | |
# Compute unique edge to face mapping from attribute/vertex index list | |
###################################################################################### | |
def compute_edge_to_face_mapping(attr_idx, return_inverse=False): | |
with torch.no_grad(): | |
# Get unique edges | |
# Create all edges, packed by triangle | |
all_edges = torch.cat(( | |
torch.stack((attr_idx[:, 0], attr_idx[:, 1]), dim=-1), | |
torch.stack((attr_idx[:, 1], attr_idx[:, 2]), dim=-1), | |
torch.stack((attr_idx[:, 2], attr_idx[:, 0]), dim=-1), | |
), dim=-1).view(-1, 2) | |
# Swap edge order so min index is always first | |
order = (all_edges[:, 0] > all_edges[:, 1]).long().unsqueeze(dim=1) | |
sorted_edges = torch.cat(( | |
torch.gather(all_edges, 1, order), | |
torch.gather(all_edges, 1, 1 - order) | |
), dim=-1) | |
# Elliminate duplicates and return inverse mapping | |
unique_edges, idx_map = torch.unique(sorted_edges, dim=0, return_inverse=True) | |
tris = torch.arange(attr_idx.shape[0]).repeat_interleave(3).cuda() | |
tris_per_edge = torch.zeros((unique_edges.shape[0], 2), dtype=torch.int64).cuda() | |
# Compute edge to face table | |
mask0 = order[:,0] == 0 | |
mask1 = order[:,0] == 1 | |
tris_per_edge[idx_map[mask0], 0] = tris[mask0] | |
tris_per_edge[idx_map[mask1], 1] = tris[mask1] | |
return tris_per_edge | |
###################################################################################### | |
# Align base mesh to reference mesh:move & rescale to match bounding boxes. | |
###################################################################################### | |
def unit_size(mesh): | |
with torch.no_grad(): | |
vmin, vmax = aabb(mesh) | |
scale = 2 / torch.max(vmax - vmin).item() | |
v_pos = mesh.v_pos - (vmax + vmin) / 2 # Center mesh on origin | |
v_pos = v_pos * scale # Rescale to unit size | |
return Mesh(v_pos, base=mesh) | |
###################################################################################### | |
# Center & scale mesh for rendering | |
###################################################################################### | |
def center_by_reference(base_mesh, ref_aabb, scale): | |
center = (ref_aabb[0] + ref_aabb[1]) * 0.5 | |
scale = scale / torch.max(ref_aabb[1] - ref_aabb[0]).item() | |
v_pos = (base_mesh.v_pos - center[None, ...]) * scale | |
return Mesh(v_pos, base=base_mesh) | |
###################################################################################### | |
# Simple smooth vertex normal computation | |
###################################################################################### | |
def auto_normals(imesh): | |
i0 = imesh.t_pos_idx[:, 0] | |
i1 = imesh.t_pos_idx[:, 1] | |
i2 = imesh.t_pos_idx[:, 2] | |
v0 = imesh.v_pos[i0, :] | |
v1 = imesh.v_pos[i1, :] | |
v2 = imesh.v_pos[i2, :] | |
face_normals = torch.cross(v1 - v0, v2 - v0) | |
# Splat face normals to vertices | |
v_nrm = torch.zeros_like(imesh.v_pos) | |
v_nrm.scatter_add_(0, i0[:, None].repeat(1,3), face_normals) | |
v_nrm.scatter_add_(0, i1[:, None].repeat(1,3), face_normals) | |
v_nrm.scatter_add_(0, i2[:, None].repeat(1,3), face_normals) | |
# Normalize, replace zero (degenerated) normals with some default value | |
v_nrm = torch.where(util.dot(v_nrm, v_nrm) > 1e-20, v_nrm, torch.tensor([0.0, 0.0, 1.0], dtype=torch.float32, device='cuda')) | |
v_nrm = util.safe_normalize(v_nrm) | |
if torch.is_anomaly_enabled(): | |
assert torch.all(torch.isfinite(v_nrm)) | |
return Mesh(v_nrm=v_nrm, t_nrm_idx=imesh.t_pos_idx, base=imesh) | |
###################################################################################### | |
# Compute tangent space from texture map coordinates | |
# Follows http://www.mikktspace.com/ conventions | |
###################################################################################### | |
def compute_tangents(imesh): | |
vn_idx = [None] * 3 | |
pos = [None] * 3 | |
tex = [None] * 3 | |
for i in range(0,3): | |
pos[i] = imesh.v_pos[imesh.t_pos_idx[:, i]] | |
tex[i] = imesh.v_tex[imesh.t_tex_idx[:, i]] | |
vn_idx[i] = imesh.t_nrm_idx[:, i] | |
tangents = torch.zeros_like(imesh.v_nrm) | |
# Compute tangent space for each triangle | |
uve1 = tex[1] - tex[0] | |
uve2 = tex[2] - tex[0] | |
pe1 = pos[1] - pos[0] | |
pe2 = pos[2] - pos[0] | |
nom = (pe1 * uve2[..., 1:2] - pe2 * uve1[..., 1:2]) | |
denom = (uve1[..., 0:1] * uve2[..., 1:2] - uve1[..., 1:2] * uve2[..., 0:1]) | |
# Avoid division by zero for degenerated texture coordinates | |
tang = nom / torch.where(denom > 0.0, torch.clamp(denom, min=1e-6), torch.clamp(denom, max=-1e-6)) | |
# Update all 3 vertices | |
for i in range(0,3): | |
idx = vn_idx[i][:, None].repeat(1,3) | |
tangents.scatter_add_(0, idx, tang) # tangents[n_i] = tangents[n_i] + tang | |
# Normalize and make sure tangent is perpendicular to normal | |
tangents = util.safe_normalize(tangents) | |
tangents = util.safe_normalize(tangents - util.dot(tangents, imesh.v_nrm) * imesh.v_nrm) | |
if torch.is_anomaly_enabled(): | |
assert torch.all(torch.isfinite(tangents)) | |
return Mesh(v_tng=tangents, t_tng_idx=imesh.t_nrm_idx, base=imesh) | |