File size: 12,276 Bytes
a1da63c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
from typing import List, Tuple

import cv2
import numpy

from facefusion import inference_manager, state_manager
from facefusion.download import conditional_download_hashes, conditional_download_sources
from facefusion.face_helper import create_rotated_matrix_and_size, create_static_anchors, distance_to_bounding_box, distance_to_face_landmark_5, normalize_bounding_box, transform_bounding_box, transform_points
from facefusion.filesystem import resolve_relative_path
from facefusion.thread_helper import thread_semaphore
from facefusion.typing import Angle, BoundingBox, DownloadSet, FaceLandmark5, InferencePool, ModelSet, Score, VisionFrame
from facefusion.vision import resize_frame_resolution, unpack_resolution

MODEL_SET : ModelSet =\
{
	'retinaface':
	{
		'hashes':
		{
			'retinaface':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/retinaface_10g.hash',
				'path': resolve_relative_path('../.assets/models/retinaface_10g.hash')
			}
		},
		'sources':
		{
			'retinaface':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/retinaface_10g.onnx',
				'path': resolve_relative_path('../.assets/models/retinaface_10g.onnx')
			}
		}
	},
	'scrfd':
	{
		'hashes':
		{
			'scrfd':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/scrfd_2.5g.hash',
				'path': resolve_relative_path('../.assets/models/scrfd_2.5g.hash')
			}
		},
		'sources':
		{
			'scrfd':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/scrfd_2.5g.onnx',
				'path': resolve_relative_path('../.assets/models/scrfd_2.5g.onnx')
			}
		}
	},
	'yoloface':
	{
		'hashes':
		{
			'yoloface':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/yoloface_8n.hash',
				'path': resolve_relative_path('../.assets/models/yoloface_8n.hash')
			}
		},
		'sources':
		{
			'yoloface':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/yoloface_8n.onnx',
				'path': resolve_relative_path('../.assets/models/yoloface_8n.onnx')
			}
		}
	}
}


def get_inference_pool() -> InferencePool:
	_, model_sources = collect_model_downloads()
	return inference_manager.get_inference_pool(__name__, model_sources)


def clear_inference_pool() -> None:
	inference_manager.clear_inference_pool(__name__)


def collect_model_downloads() -> Tuple[DownloadSet, DownloadSet]:
	model_hashes = {}
	model_sources = {}

	if state_manager.get_item('face_detector_model') in [ 'many', 'retinaface' ]:
		model_hashes['retinaface'] = MODEL_SET.get('retinaface').get('hashes').get('retinaface')
		model_sources['retinaface'] = MODEL_SET.get('retinaface').get('sources').get('retinaface')
	if state_manager.get_item('face_detector_model') in [ 'many', 'scrfd' ]:
		model_hashes['scrfd'] = MODEL_SET.get('scrfd').get('hashes').get('scrfd')
		model_sources['scrfd'] = MODEL_SET.get('scrfd').get('sources').get('scrfd')
	if state_manager.get_item('face_detector_model') in [ 'many', 'yoloface' ]:
		model_hashes['yoloface'] = MODEL_SET.get('yoloface').get('hashes').get('yoloface')
		model_sources['yoloface'] = MODEL_SET.get('yoloface').get('sources').get('yoloface')
	return model_hashes, model_sources


def pre_check() -> bool:
	download_directory_path = resolve_relative_path('../.assets/models')
	model_hashes, model_sources = collect_model_downloads()

	return conditional_download_hashes(download_directory_path, model_hashes) and conditional_download_sources(download_directory_path, model_sources)


def detect_faces(vision_frame : VisionFrame) -> Tuple[List[BoundingBox], List[Score], List[FaceLandmark5]]:
	all_bounding_boxes : List[BoundingBox] = []
	all_face_scores : List[Score] = []
	all_face_landmarks_5 : List[FaceLandmark5] = []

	if state_manager.get_item('face_detector_model') in [ 'many', 'retinaface' ]:
		bounding_boxes, face_scores, face_landmarks_5 = detect_with_retinaface(vision_frame, state_manager.get_item('face_detector_size'))
		all_bounding_boxes.extend(bounding_boxes)
		all_face_scores.extend(face_scores)
		all_face_landmarks_5.extend(face_landmarks_5)

	if state_manager.get_item('face_detector_model') in [ 'many', 'scrfd' ]:
		bounding_boxes, face_scores, face_landmarks_5 = detect_with_scrfd(vision_frame, state_manager.get_item('face_detector_size'))
		all_bounding_boxes.extend(bounding_boxes)
		all_face_scores.extend(face_scores)
		all_face_landmarks_5.extend(face_landmarks_5)

	if state_manager.get_item('face_detector_model') in [ 'many', 'yoloface' ]:
		bounding_boxes, face_scores, face_landmarks_5 = detect_with_yoloface(vision_frame, state_manager.get_item('face_detector_size'))
		all_bounding_boxes.extend(bounding_boxes)
		all_face_scores.extend(face_scores)
		all_face_landmarks_5.extend(face_landmarks_5)

	all_bounding_boxes = [ normalize_bounding_box(all_bounding_box) for all_bounding_box in all_bounding_boxes ]
	return all_bounding_boxes, all_face_scores, all_face_landmarks_5


def detect_rotated_faces(vision_frame : VisionFrame, angle : Angle) -> Tuple[List[BoundingBox], List[Score], List[FaceLandmark5]]:
	rotated_matrix, rotated_size = create_rotated_matrix_and_size(angle, vision_frame.shape[:2][::-1])
	rotated_vision_frame = cv2.warpAffine(vision_frame, rotated_matrix, rotated_size)
	rotated_inverse_matrix = cv2.invertAffineTransform(rotated_matrix)
	bounding_boxes, face_scores, face_landmarks_5 = detect_faces(rotated_vision_frame)
	bounding_boxes = [ transform_bounding_box(bounding_box, rotated_inverse_matrix) for bounding_box in bounding_boxes ]
	face_landmarks_5 = [ transform_points(face_landmark_5, rotated_inverse_matrix) for face_landmark_5 in face_landmarks_5 ]
	return bounding_boxes, face_scores, face_landmarks_5


def detect_with_retinaface(vision_frame : VisionFrame, face_detector_size : str) -> Tuple[List[BoundingBox], List[Score], List[FaceLandmark5]]:
	face_detector = get_inference_pool().get('retinaface')
	face_detector_width, face_detector_height = unpack_resolution(face_detector_size)
	temp_vision_frame = resize_frame_resolution(vision_frame, (face_detector_width, face_detector_height))
	ratio_height = vision_frame.shape[0] / temp_vision_frame.shape[0]
	ratio_width = vision_frame.shape[1] / temp_vision_frame.shape[1]
	feature_strides = [ 8, 16, 32 ]
	feature_map_channel = 3
	anchor_total = 2
	bounding_boxes = []
	face_scores = []
	face_landmarks_5 = []

	detect_vision_frame = prepare_detect_frame(temp_vision_frame, face_detector_size)
	with thread_semaphore():
		detections = face_detector.run(None,
		{
			'input': detect_vision_frame
		})

	for index, feature_stride in enumerate(feature_strides):
		keep_indices = numpy.where(detections[index] >= state_manager.get_item('face_detector_score'))[0]
		if numpy.any(keep_indices):
			stride_height = face_detector_height // feature_stride
			stride_width = face_detector_width // feature_stride
			anchors = create_static_anchors(feature_stride, anchor_total, stride_height, stride_width)
			bounding_box_raw = detections[index + feature_map_channel] * feature_stride
			face_landmark_5_raw = detections[index + feature_map_channel * 2] * feature_stride
			for bounding_box in distance_to_bounding_box(anchors, bounding_box_raw)[keep_indices]:
				bounding_boxes.append(numpy.array(
				[
					bounding_box[0] * ratio_width,
					bounding_box[1] * ratio_height,
					bounding_box[2] * ratio_width,
					bounding_box[3] * ratio_height,
				]))
			for score in detections[index][keep_indices]:
				face_scores.append(score[0])
			for face_landmark_5 in distance_to_face_landmark_5(anchors, face_landmark_5_raw)[keep_indices]:
				face_landmarks_5.append(face_landmark_5 * [ ratio_width, ratio_height ])
	return bounding_boxes, face_scores, face_landmarks_5


def detect_with_scrfd(vision_frame : VisionFrame, face_detector_size : str) -> Tuple[List[BoundingBox], List[Score], List[FaceLandmark5]]:
	face_detector = get_inference_pool().get('scrfd')
	face_detector_width, face_detector_height = unpack_resolution(face_detector_size)
	temp_vision_frame = resize_frame_resolution(vision_frame, (face_detector_width, face_detector_height))
	ratio_height = vision_frame.shape[0] / temp_vision_frame.shape[0]
	ratio_width = vision_frame.shape[1] / temp_vision_frame.shape[1]
	feature_strides = [ 8, 16, 32 ]
	feature_map_channel = 3
	anchor_total = 2
	bounding_boxes = []
	face_scores = []
	face_landmarks_5 = []

	detect_vision_frame = prepare_detect_frame(temp_vision_frame, face_detector_size)
	with thread_semaphore():
		detections = face_detector.run(None,
		{
			'input': detect_vision_frame
		})

	for index, feature_stride in enumerate(feature_strides):
		keep_indices = numpy.where(detections[index] >= state_manager.get_item('face_detector_score'))[0]
		if numpy.any(keep_indices):
			stride_height = face_detector_height // feature_stride
			stride_width = face_detector_width // feature_stride
			anchors = create_static_anchors(feature_stride, anchor_total, stride_height, stride_width)
			bounding_box_raw = detections[index + feature_map_channel] * feature_stride
			face_landmark_5_raw = detections[index + feature_map_channel * 2] * feature_stride
			for bounding_box in distance_to_bounding_box(anchors, bounding_box_raw)[keep_indices]:
				bounding_boxes.append(numpy.array(
				[
					bounding_box[0] * ratio_width,
					bounding_box[1] * ratio_height,
					bounding_box[2] * ratio_width,
					bounding_box[3] * ratio_height,
				]))
			for score in detections[index][keep_indices]:
				face_scores.append(score[0])
			for face_landmark_5 in distance_to_face_landmark_5(anchors, face_landmark_5_raw)[keep_indices]:
				face_landmarks_5.append(face_landmark_5 * [ ratio_width, ratio_height ])
	return bounding_boxes, face_scores, face_landmarks_5


def detect_with_yoloface(vision_frame : VisionFrame, face_detector_size : str) -> Tuple[List[BoundingBox], List[Score], List[FaceLandmark5]]:
	face_detector = get_inference_pool().get('yoloface')
	face_detector_width, face_detector_height = unpack_resolution(face_detector_size)
	temp_vision_frame = resize_frame_resolution(vision_frame, (face_detector_width, face_detector_height))
	ratio_height = vision_frame.shape[0] / temp_vision_frame.shape[0]
	ratio_width = vision_frame.shape[1] / temp_vision_frame.shape[1]
	bounding_boxes = []
	face_scores = []
	face_landmarks_5 = []

	detect_vision_frame = prepare_detect_frame(temp_vision_frame, face_detector_size)
	with thread_semaphore():
		detections = face_detector.run(None,
		{
			'input': detect_vision_frame
		})

	detections = numpy.squeeze(detections).T
	bounding_box_raw, score_raw, face_landmark_5_raw = numpy.split(detections, [ 4, 5 ], axis = 1)
	keep_indices = numpy.where(score_raw > state_manager.get_item('face_detector_score'))[0]
	if numpy.any(keep_indices):
		bounding_box_raw, face_landmark_5_raw, score_raw = bounding_box_raw[keep_indices], face_landmark_5_raw[keep_indices], score_raw[keep_indices]
		for bounding_box in bounding_box_raw:
			bounding_boxes.append(numpy.array(
			[
				(bounding_box[0] - bounding_box[2] / 2) * ratio_width,
				(bounding_box[1] - bounding_box[3] / 2) * ratio_height,
				(bounding_box[0] + bounding_box[2] / 2) * ratio_width,
				(bounding_box[1] + bounding_box[3] / 2) * ratio_height,
			]))
		face_scores = score_raw.ravel().tolist()
		face_landmark_5_raw[:, 0::3] = (face_landmark_5_raw[:, 0::3]) * ratio_width
		face_landmark_5_raw[:, 1::3] = (face_landmark_5_raw[:, 1::3]) * ratio_height
		for face_landmark_5 in face_landmark_5_raw:
			face_landmarks_5.append(numpy.array(face_landmark_5.reshape(-1, 3)[:, :2]))
	return bounding_boxes, face_scores, face_landmarks_5


def prepare_detect_frame(temp_vision_frame : VisionFrame, face_detector_size : str) -> VisionFrame:
	face_detector_width, face_detector_height = unpack_resolution(face_detector_size)
	detect_vision_frame = numpy.zeros((face_detector_height, face_detector_width, 3))
	detect_vision_frame[:temp_vision_frame.shape[0], :temp_vision_frame.shape[1], :] = temp_vision_frame
	detect_vision_frame = (detect_vision_frame - 127.5) / 128.0
	detect_vision_frame = numpy.expand_dims(detect_vision_frame.transpose(2, 0, 1), axis = 0).astype(numpy.float32)
	return detect_vision_frame