Spaces:
Build error
Build error
File size: 8,491 Bytes
a1da63c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
from functools import lru_cache
from typing import List, Sequence, Tuple
import cv2
import numpy
from cv2.typing import Size
from facefusion.typing import Anchors, Angle, BoundingBox, Distance, FaceDetectorModel, FaceLandmark5, FaceLandmark68, Mask, Matrix, Points, Scale, Score, Translation, VisionFrame, WarpTemplate, WarpTemplateSet
WARP_TEMPLATES : WarpTemplateSet =\
{
'arcface_112_v1': numpy.array(
[
[ 0.35473214, 0.45658929 ],
[ 0.64526786, 0.45658929 ],
[ 0.50000000, 0.61154464 ],
[ 0.37913393, 0.77687500 ],
[ 0.62086607, 0.77687500 ]
]),
'arcface_112_v2': numpy.array(
[
[ 0.34191607, 0.46157411 ],
[ 0.65653393, 0.45983393 ],
[ 0.50022500, 0.64050536 ],
[ 0.37097589, 0.82469196 ],
[ 0.63151696, 0.82325089 ]
]),
'arcface_128_v2': numpy.array(
[
[ 0.36167656, 0.40387734 ],
[ 0.63696719, 0.40235469 ],
[ 0.50019687, 0.56044219 ],
[ 0.38710391, 0.72160547 ],
[ 0.61507734, 0.72034453 ]
]),
'ffhq_512': numpy.array(
[
[ 0.37691676, 0.46864664 ],
[ 0.62285697, 0.46912813 ],
[ 0.50123859, 0.61331904 ],
[ 0.39308822, 0.72541100 ],
[ 0.61150205, 0.72490465 ]
])
}
def estimate_matrix_by_face_landmark_5(face_landmark_5 : FaceLandmark5, warp_template : WarpTemplate, crop_size : Size) -> Matrix:
normed_warp_template = WARP_TEMPLATES.get(warp_template) * crop_size
affine_matrix = cv2.estimateAffinePartial2D(face_landmark_5, normed_warp_template, method = cv2.RANSAC, ransacReprojThreshold = 100)[0]
return affine_matrix
def warp_face_by_face_landmark_5(temp_vision_frame : VisionFrame, face_landmark_5 : FaceLandmark5, warp_template : WarpTemplate, crop_size : Size) -> Tuple[VisionFrame, Matrix]:
affine_matrix = estimate_matrix_by_face_landmark_5(face_landmark_5, warp_template, crop_size)
crop_vision_frame = cv2.warpAffine(temp_vision_frame, affine_matrix, crop_size, borderMode = cv2.BORDER_REPLICATE, flags = cv2.INTER_AREA)
return crop_vision_frame, affine_matrix
def warp_face_by_bounding_box(temp_vision_frame : VisionFrame, bounding_box : BoundingBox, crop_size : Size) -> Tuple[VisionFrame, Matrix]:
source_points = numpy.array([ [ bounding_box[0], bounding_box[1] ], [bounding_box[2], bounding_box[1] ], [ bounding_box[0], bounding_box[3] ] ]).astype(numpy.float32)
target_points = numpy.array([ [ 0, 0 ], [ crop_size[0], 0 ], [ 0, crop_size[1] ] ]).astype(numpy.float32)
affine_matrix = cv2.getAffineTransform(source_points, target_points)
if bounding_box[2] - bounding_box[0] > crop_size[0] or bounding_box[3] - bounding_box[1] > crop_size[1]:
interpolation_method = cv2.INTER_AREA
else:
interpolation_method = cv2.INTER_LINEAR
crop_vision_frame = cv2.warpAffine(temp_vision_frame, affine_matrix, crop_size, flags = interpolation_method)
return crop_vision_frame, affine_matrix
def warp_face_by_translation(temp_vision_frame : VisionFrame, translation : Translation, scale : float, crop_size : Size) -> Tuple[VisionFrame, Matrix]:
affine_matrix = numpy.array([ [ scale, 0, translation[0] ], [ 0, scale, translation[1] ] ])
crop_vision_frame = cv2.warpAffine(temp_vision_frame, affine_matrix, crop_size)
return crop_vision_frame, affine_matrix
def paste_back(temp_vision_frame : VisionFrame, crop_vision_frame : VisionFrame, crop_mask : Mask, affine_matrix : Matrix) -> VisionFrame:
inverse_matrix = cv2.invertAffineTransform(affine_matrix)
temp_size = temp_vision_frame.shape[:2][::-1]
inverse_mask = cv2.warpAffine(crop_mask, inverse_matrix, temp_size).clip(0, 1)
inverse_vision_frame = cv2.warpAffine(crop_vision_frame, inverse_matrix, temp_size, borderMode = cv2.BORDER_REPLICATE)
paste_vision_frame = temp_vision_frame.copy()
paste_vision_frame[:, :, 0] = inverse_mask * inverse_vision_frame[:, :, 0] + (1 - inverse_mask) * temp_vision_frame[:, :, 0]
paste_vision_frame[:, :, 1] = inverse_mask * inverse_vision_frame[:, :, 1] + (1 - inverse_mask) * temp_vision_frame[:, :, 1]
paste_vision_frame[:, :, 2] = inverse_mask * inverse_vision_frame[:, :, 2] + (1 - inverse_mask) * temp_vision_frame[:, :, 2]
return paste_vision_frame
@lru_cache(maxsize = None)
def create_static_anchors(feature_stride : int, anchor_total : int, stride_height : int, stride_width : int) -> Anchors:
y, x = numpy.mgrid[:stride_height, :stride_width][::-1]
anchors = numpy.stack((y, x), axis = -1)
anchors = (anchors * feature_stride).reshape((-1, 2))
anchors = numpy.stack([ anchors ] * anchor_total, axis = 1).reshape((-1, 2))
return anchors
def create_rotated_matrix_and_size(angle : Angle, size : Size) -> Tuple[Matrix, Size]:
rotated_matrix = cv2.getRotationMatrix2D((size[0] / 2, size[1] / 2), angle, 1)
rotated_size = numpy.dot(numpy.abs(rotated_matrix[:, :2]), size)
rotated_matrix[:, -1] += (rotated_size - size) * 0.5 #type:ignore[misc]
rotated_size = int(rotated_size[0]), int(rotated_size[1])
return rotated_matrix, rotated_size
def create_bounding_box(face_landmark_68 : FaceLandmark68) -> BoundingBox:
min_x, min_y = numpy.min(face_landmark_68, axis = 0)
max_x, max_y = numpy.max(face_landmark_68, axis = 0)
bounding_box = normalize_bounding_box(numpy.array([ min_x, min_y, max_x, max_y ]))
return bounding_box
def normalize_bounding_box(bounding_box : BoundingBox) -> BoundingBox:
x1, y1, x2, y2 = bounding_box
x1, x2 = sorted([ x1, x2 ])
y1, y2 = sorted([ y1, y2 ])
return numpy.array([ x1, y1, x2, y2 ])
def transform_points(points : Points, matrix : Matrix) -> Points:
points = points.reshape(-1, 1, 2)
points = cv2.transform(points, matrix) #type:ignore[assignment]
points = points.reshape(-1, 2)
return points
def transform_bounding_box(bounding_box : BoundingBox, matrix : Matrix) -> BoundingBox:
points = numpy.array(
[
[ bounding_box[0], bounding_box[1] ],
[ bounding_box[2], bounding_box[1] ],
[ bounding_box[2], bounding_box[3] ],
[ bounding_box[0], bounding_box[3] ]
])
points = transform_points(points, matrix)
x1, y1 = numpy.min(points, axis = 0)
x2, y2 = numpy.max(points, axis = 0)
return normalize_bounding_box(numpy.array([ x1, y1, x2, y2 ]))
def distance_to_bounding_box(points : Points, distance : Distance) -> BoundingBox:
x1 = points[:, 0] - distance[:, 0]
y1 = points[:, 1] - distance[:, 1]
x2 = points[:, 0] + distance[:, 2]
y2 = points[:, 1] + distance[:, 3]
bounding_box = numpy.column_stack([ x1, y1, x2, y2 ])
return bounding_box
def distance_to_face_landmark_5(points : Points, distance : Distance) -> FaceLandmark5:
x = points[:, 0::2] + distance[:, 0::2]
y = points[:, 1::2] + distance[:, 1::2]
face_landmark_5 = numpy.stack((x, y), axis = -1)
return face_landmark_5
def scale_face_landmark_5(face_landmark_5 : FaceLandmark5, scale : Scale) -> FaceLandmark5:
face_landmark_5_scale = face_landmark_5 - face_landmark_5[2]
face_landmark_5_scale *= scale
face_landmark_5_scale += face_landmark_5[2]
return face_landmark_5_scale
def convert_to_face_landmark_5(face_landmark_68 : FaceLandmark68) -> FaceLandmark5:
face_landmark_5 = numpy.array(
[
numpy.mean(face_landmark_68[36:42], axis = 0),
numpy.mean(face_landmark_68[42:48], axis = 0),
face_landmark_68[30],
face_landmark_68[48],
face_landmark_68[54]
])
return face_landmark_5
def estimate_face_angle(face_landmark_68 : FaceLandmark68) -> Angle:
x1, y1 = face_landmark_68[0]
x2, y2 = face_landmark_68[16]
theta = numpy.arctan2(y2 - y1, x2 - x1)
theta = numpy.degrees(theta) % 360
angles = numpy.linspace(0, 360, 5)
index = numpy.argmin(numpy.abs(angles - theta))
face_angle = int(angles[index] % 360)
return face_angle
def apply_nms(bounding_boxes : List[BoundingBox], face_scores : List[Score], score_threshold : float, nms_threshold : float) -> Sequence[int]:
normed_bounding_boxes = [ (x1, y1, x2 - x1, y2 - y1) for (x1, y1, x2, y2) in bounding_boxes ]
keep_indices = cv2.dnn.NMSBoxes(normed_bounding_boxes, face_scores, score_threshold = score_threshold, nms_threshold = nms_threshold)
return keep_indices
def get_nms_threshold(face_detector_model : FaceDetectorModel, face_detector_angles : List[Angle]) -> float:
if face_detector_model == 'many':
return 0.1
if len(face_detector_angles) == 2:
return 0.3
if len(face_detector_angles) == 3:
return 0.2
if len(face_detector_angles) == 4:
return 0.1
return 0.4
def merge_matrix(matrices : List[Matrix]) -> Matrix:
merged_matrix = numpy.vstack([ matrices[0], [ 0, 0, 1 ] ])
for matrix in matrices[1:]:
matrix = numpy.vstack([ matrix, [ 0, 0, 1 ] ])
merged_matrix = numpy.dot(merged_matrix, matrix)
return merged_matrix[:2, :]
|