File size: 8,491 Bytes
a1da63c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
from functools import lru_cache
from typing import List, Sequence, Tuple

import cv2
import numpy
from cv2.typing import Size

from facefusion.typing import Anchors, Angle, BoundingBox, Distance, FaceDetectorModel, FaceLandmark5, FaceLandmark68, Mask, Matrix, Points, Scale, Score, Translation, VisionFrame, WarpTemplate, WarpTemplateSet

WARP_TEMPLATES : WarpTemplateSet =\
{
	'arcface_112_v1': numpy.array(
	[
		[ 0.35473214, 0.45658929 ],
		[ 0.64526786, 0.45658929 ],
		[ 0.50000000, 0.61154464 ],
		[ 0.37913393, 0.77687500 ],
		[ 0.62086607, 0.77687500 ]
	]),
	'arcface_112_v2': numpy.array(
	[
		[ 0.34191607, 0.46157411 ],
		[ 0.65653393, 0.45983393 ],
		[ 0.50022500, 0.64050536 ],
		[ 0.37097589, 0.82469196 ],
		[ 0.63151696, 0.82325089 ]
	]),
	'arcface_128_v2': numpy.array(
	[
		[ 0.36167656, 0.40387734 ],
		[ 0.63696719, 0.40235469 ],
		[ 0.50019687, 0.56044219 ],
		[ 0.38710391, 0.72160547 ],
		[ 0.61507734, 0.72034453 ]
	]),
	'ffhq_512': numpy.array(
	[
		[ 0.37691676, 0.46864664 ],
		[ 0.62285697, 0.46912813 ],
		[ 0.50123859, 0.61331904 ],
		[ 0.39308822, 0.72541100 ],
		[ 0.61150205, 0.72490465 ]
	])
}


def estimate_matrix_by_face_landmark_5(face_landmark_5 : FaceLandmark5, warp_template : WarpTemplate, crop_size : Size) -> Matrix:
	normed_warp_template = WARP_TEMPLATES.get(warp_template) * crop_size
	affine_matrix = cv2.estimateAffinePartial2D(face_landmark_5, normed_warp_template, method = cv2.RANSAC, ransacReprojThreshold = 100)[0]
	return affine_matrix


def warp_face_by_face_landmark_5(temp_vision_frame : VisionFrame, face_landmark_5 : FaceLandmark5, warp_template : WarpTemplate, crop_size : Size) -> Tuple[VisionFrame, Matrix]:
	affine_matrix = estimate_matrix_by_face_landmark_5(face_landmark_5, warp_template, crop_size)
	crop_vision_frame = cv2.warpAffine(temp_vision_frame, affine_matrix, crop_size, borderMode = cv2.BORDER_REPLICATE, flags = cv2.INTER_AREA)
	return crop_vision_frame, affine_matrix


def warp_face_by_bounding_box(temp_vision_frame : VisionFrame, bounding_box : BoundingBox, crop_size : Size) -> Tuple[VisionFrame, Matrix]:
	source_points = numpy.array([ [ bounding_box[0], bounding_box[1] ], [bounding_box[2], bounding_box[1] ], [ bounding_box[0], bounding_box[3] ] ]).astype(numpy.float32)
	target_points = numpy.array([ [ 0, 0 ], [ crop_size[0], 0 ], [ 0, crop_size[1] ] ]).astype(numpy.float32)
	affine_matrix = cv2.getAffineTransform(source_points, target_points)
	if bounding_box[2] - bounding_box[0] > crop_size[0] or bounding_box[3] - bounding_box[1] > crop_size[1]:
		interpolation_method = cv2.INTER_AREA
	else:
		interpolation_method = cv2.INTER_LINEAR
	crop_vision_frame = cv2.warpAffine(temp_vision_frame, affine_matrix, crop_size, flags = interpolation_method)
	return crop_vision_frame, affine_matrix


def warp_face_by_translation(temp_vision_frame : VisionFrame, translation : Translation, scale : float, crop_size : Size) -> Tuple[VisionFrame, Matrix]:
	affine_matrix = numpy.array([ [ scale, 0, translation[0] ], [ 0, scale, translation[1] ] ])
	crop_vision_frame = cv2.warpAffine(temp_vision_frame, affine_matrix, crop_size)
	return crop_vision_frame, affine_matrix


def paste_back(temp_vision_frame : VisionFrame, crop_vision_frame : VisionFrame, crop_mask : Mask, affine_matrix : Matrix) -> VisionFrame:
	inverse_matrix = cv2.invertAffineTransform(affine_matrix)
	temp_size = temp_vision_frame.shape[:2][::-1]
	inverse_mask = cv2.warpAffine(crop_mask, inverse_matrix, temp_size).clip(0, 1)
	inverse_vision_frame = cv2.warpAffine(crop_vision_frame, inverse_matrix, temp_size, borderMode = cv2.BORDER_REPLICATE)
	paste_vision_frame = temp_vision_frame.copy()
	paste_vision_frame[:, :, 0] = inverse_mask * inverse_vision_frame[:, :, 0] + (1 - inverse_mask) * temp_vision_frame[:, :, 0]
	paste_vision_frame[:, :, 1] = inverse_mask * inverse_vision_frame[:, :, 1] + (1 - inverse_mask) * temp_vision_frame[:, :, 1]
	paste_vision_frame[:, :, 2] = inverse_mask * inverse_vision_frame[:, :, 2] + (1 - inverse_mask) * temp_vision_frame[:, :, 2]
	return paste_vision_frame


@lru_cache(maxsize = None)
def create_static_anchors(feature_stride : int, anchor_total : int, stride_height : int, stride_width : int) -> Anchors:
	y, x = numpy.mgrid[:stride_height, :stride_width][::-1]
	anchors = numpy.stack((y, x), axis = -1)
	anchors = (anchors * feature_stride).reshape((-1, 2))
	anchors = numpy.stack([ anchors ] * anchor_total, axis = 1).reshape((-1, 2))
	return anchors


def create_rotated_matrix_and_size(angle : Angle, size : Size) -> Tuple[Matrix, Size]:
	rotated_matrix = cv2.getRotationMatrix2D((size[0] / 2, size[1] / 2), angle, 1)
	rotated_size = numpy.dot(numpy.abs(rotated_matrix[:, :2]), size)
	rotated_matrix[:, -1] += (rotated_size - size) * 0.5 #type:ignore[misc]
	rotated_size = int(rotated_size[0]), int(rotated_size[1])
	return rotated_matrix, rotated_size


def create_bounding_box(face_landmark_68 : FaceLandmark68) -> BoundingBox:
	min_x, min_y = numpy.min(face_landmark_68, axis = 0)
	max_x, max_y = numpy.max(face_landmark_68, axis = 0)
	bounding_box = normalize_bounding_box(numpy.array([ min_x, min_y, max_x, max_y ]))
	return bounding_box


def normalize_bounding_box(bounding_box : BoundingBox) -> BoundingBox:
	x1, y1, x2, y2 = bounding_box
	x1, x2 = sorted([ x1, x2 ])
	y1, y2 = sorted([ y1, y2 ])
	return numpy.array([ x1, y1, x2, y2 ])


def transform_points(points : Points, matrix : Matrix) -> Points:
	points = points.reshape(-1, 1, 2)
	points = cv2.transform(points, matrix) #type:ignore[assignment]
	points = points.reshape(-1, 2)
	return points


def transform_bounding_box(bounding_box : BoundingBox, matrix : Matrix) -> BoundingBox:
	points = numpy.array(
	[
		[ bounding_box[0], bounding_box[1] ],
		[ bounding_box[2], bounding_box[1] ],
		[ bounding_box[2], bounding_box[3] ],
		[ bounding_box[0], bounding_box[3] ]
	])
	points = transform_points(points, matrix)
	x1, y1 = numpy.min(points, axis = 0)
	x2, y2 = numpy.max(points, axis = 0)
	return normalize_bounding_box(numpy.array([ x1, y1, x2, y2 ]))


def distance_to_bounding_box(points : Points, distance : Distance) -> BoundingBox:
	x1 = points[:, 0] - distance[:, 0]
	y1 = points[:, 1] - distance[:, 1]
	x2 = points[:, 0] + distance[:, 2]
	y2 = points[:, 1] + distance[:, 3]
	bounding_box = numpy.column_stack([ x1, y1, x2, y2 ])
	return bounding_box


def distance_to_face_landmark_5(points : Points, distance : Distance) -> FaceLandmark5:
	x = points[:, 0::2] + distance[:, 0::2]
	y = points[:, 1::2] + distance[:, 1::2]
	face_landmark_5 = numpy.stack((x, y), axis = -1)
	return face_landmark_5


def scale_face_landmark_5(face_landmark_5 : FaceLandmark5, scale : Scale) -> FaceLandmark5:
	face_landmark_5_scale = face_landmark_5 - face_landmark_5[2]
	face_landmark_5_scale *= scale
	face_landmark_5_scale += face_landmark_5[2]
	return face_landmark_5_scale


def convert_to_face_landmark_5(face_landmark_68 : FaceLandmark68) -> FaceLandmark5:
	face_landmark_5 = numpy.array(
	[
		numpy.mean(face_landmark_68[36:42], axis = 0),
		numpy.mean(face_landmark_68[42:48], axis = 0),
		face_landmark_68[30],
		face_landmark_68[48],
		face_landmark_68[54]
	])
	return face_landmark_5


def estimate_face_angle(face_landmark_68 : FaceLandmark68) -> Angle:
	x1, y1 = face_landmark_68[0]
	x2, y2 = face_landmark_68[16]
	theta = numpy.arctan2(y2 - y1, x2 - x1)
	theta = numpy.degrees(theta) % 360
	angles = numpy.linspace(0, 360, 5)
	index = numpy.argmin(numpy.abs(angles - theta))
	face_angle = int(angles[index] % 360)
	return face_angle


def apply_nms(bounding_boxes : List[BoundingBox], face_scores : List[Score], score_threshold : float, nms_threshold : float) -> Sequence[int]:
	normed_bounding_boxes = [ (x1, y1, x2 - x1, y2 - y1) for (x1, y1, x2, y2) in bounding_boxes ]
	keep_indices = cv2.dnn.NMSBoxes(normed_bounding_boxes, face_scores, score_threshold = score_threshold, nms_threshold = nms_threshold)
	return keep_indices


def get_nms_threshold(face_detector_model : FaceDetectorModel, face_detector_angles : List[Angle]) -> float:
	if face_detector_model == 'many':
		return 0.1
	if len(face_detector_angles) == 2:
		return 0.3
	if len(face_detector_angles) == 3:
		return 0.2
	if len(face_detector_angles) == 4:
		return 0.1
	return 0.4


def merge_matrix(matrices : List[Matrix]) -> Matrix:
	merged_matrix = numpy.vstack([ matrices[0], [ 0, 0, 1 ] ])
	for matrix in matrices[1:]:
		matrix = numpy.vstack([ matrix, [ 0, 0, 1 ] ])
		merged_matrix = numpy.dot(merged_matrix, matrix)
	return merged_matrix[:2, :]