File size: 8,197 Bytes
a1da63c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
from typing import Tuple

import cv2
import numpy

from facefusion import inference_manager, state_manager
from facefusion.download import conditional_download_hashes, conditional_download_sources
from facefusion.face_helper import create_rotated_matrix_and_size, estimate_matrix_by_face_landmark_5, transform_points, warp_face_by_translation
from facefusion.filesystem import resolve_relative_path
from facefusion.thread_helper import conditional_thread_semaphore
from facefusion.typing import Angle, BoundingBox, DownloadSet, FaceLandmark5, FaceLandmark68, InferencePool, ModelSet, Score, VisionFrame

MODEL_SET : ModelSet =\
{
	'2dfan4':
	{
		'hashes':
		{
			'2dfan4':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/2dfan4.hash',
				'path': resolve_relative_path('../.assets/models/2dfan4.hash')
			}
		},
		'sources':
		{
			'2dfan4':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/2dfan4.onnx',
				'path': resolve_relative_path('../.assets/models/2dfan4.onnx')
			}
		}
	},
	'peppa_wutz':
	{
		'hashes':
		{
			'peppa_wutz':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/peppa_wutz.hash',
				'path': resolve_relative_path('../.assets/models/peppa_wutz.hash')
			}
		},
		'sources':
		{
			'peppa_wutz':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/peppa_wutz.onnx',
				'path': resolve_relative_path('../.assets/models/peppa_wutz.onnx')
			}
		}
	},
	'face_landmarker_68_5':
	{
		'hashes':
		{
			'face_landmarker_68_5':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/face_landmarker_68_5.hash',
				'path': resolve_relative_path('../.assets/models/face_landmarker_68_5.hash')
			}
		},
		'sources':
		{
			'face_landmarker_68_5':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/face_landmarker_68_5.onnx',
				'path': resolve_relative_path('../.assets/models/face_landmarker_68_5.onnx')
			}
		}
	}
}


def get_inference_pool() -> InferencePool:
	_, model_sources = collect_model_downloads()
	return inference_manager.get_inference_pool(__name__, model_sources)


def clear_inference_pool() -> None:
	inference_manager.clear_inference_pool(__name__)


def collect_model_downloads() -> Tuple[DownloadSet, DownloadSet]:
	model_hashes =\
	{
		'face_landmarker_68_5': MODEL_SET.get('face_landmarker_68_5').get('hashes').get('face_landmarker_68_5')
	}
	model_sources =\
	{
		'face_landmarker_68_5': MODEL_SET.get('face_landmarker_68_5').get('sources').get('face_landmarker_68_5')
	}

	if state_manager.get_item('face_landmarker_model') in [ 'many', '2dfan4' ]:
		model_hashes['2dfan4'] = MODEL_SET.get('2dfan4').get('hashes').get('2dfan4')
		model_sources['2dfan4'] = MODEL_SET.get('2dfan4').get('sources').get('2dfan4')
	if state_manager.get_item('face_landmarker_model') in [ 'many', 'peppa_wutz' ]:
		model_hashes['peppa_wutz'] = MODEL_SET.get('peppa_wutz').get('hashes').get('peppa_wutz')
		model_sources['peppa_wutz'] = MODEL_SET.get('peppa_wutz').get('sources').get('peppa_wutz')
	return model_hashes, model_sources


def pre_check() -> bool:
	download_directory_path = resolve_relative_path('../.assets/models')
	model_hashes, model_sources = collect_model_downloads()

	return conditional_download_hashes(download_directory_path, model_hashes) and conditional_download_sources(download_directory_path, model_sources)


def detect_face_landmarks(vision_frame : VisionFrame, bounding_box : BoundingBox, face_angle : Angle) -> Tuple[FaceLandmark68, Score]:
	face_landmark_2dfan4 = None
	face_landmark_peppa_wutz = None
	face_landmark_score_2dfan4 = 0.0
	face_landmark_score_peppa_wutz = 0.0

	if state_manager.get_item('face_landmarker_model') in [ 'many', '2dfan4' ]:
		face_landmark_2dfan4, face_landmark_score_2dfan4 = detect_with_2dfan4(vision_frame, bounding_box, face_angle)
	if state_manager.get_item('face_landmarker_model') in [ 'many', 'peppa_wutz' ]:
		face_landmark_peppa_wutz, face_landmark_score_peppa_wutz = detect_with_peppa_wutz(vision_frame, bounding_box, face_angle)

	if face_landmark_score_2dfan4 > face_landmark_score_peppa_wutz:
		return face_landmark_2dfan4, face_landmark_score_2dfan4
	return face_landmark_peppa_wutz, face_landmark_score_peppa_wutz


def detect_with_2dfan4(temp_vision_frame : VisionFrame, bounding_box : BoundingBox, face_angle : Angle) -> Tuple[FaceLandmark68, Score]:
	face_landmarker = get_inference_pool().get('2dfan4')
	scale = 195 / numpy.subtract(bounding_box[2:], bounding_box[:2]).max().clip(1, None)
	translation = (256 - numpy.add(bounding_box[2:], bounding_box[:2]) * scale) * 0.5
	rotated_matrix, rotated_size = create_rotated_matrix_and_size(face_angle, (256, 256))
	crop_vision_frame, affine_matrix = warp_face_by_translation(temp_vision_frame, translation, scale, (256, 256))
	crop_vision_frame = cv2.warpAffine(crop_vision_frame, rotated_matrix, rotated_size)
	crop_vision_frame = conditional_optimize_contrast(crop_vision_frame)
	crop_vision_frame = crop_vision_frame.transpose(2, 0, 1).astype(numpy.float32) / 255.0

	with conditional_thread_semaphore():
		face_landmark_68, face_heatmap = face_landmarker.run(None,
		{
			'input': [ crop_vision_frame ]
		})

	face_landmark_68 = face_landmark_68[:, :, :2][0] / 64 * 256
	face_landmark_68 = transform_points(face_landmark_68, cv2.invertAffineTransform(rotated_matrix))
	face_landmark_68 = transform_points(face_landmark_68, cv2.invertAffineTransform(affine_matrix))
	face_landmark_score_68 = numpy.amax(face_heatmap, axis = (2, 3))
	face_landmark_score_68 = numpy.mean(face_landmark_score_68)
	return face_landmark_68, face_landmark_score_68


def detect_with_peppa_wutz(temp_vision_frame : VisionFrame, bounding_box : BoundingBox, face_angle : Angle) -> Tuple[FaceLandmark68, Score]:
	face_landmarker = get_inference_pool().get('peppa_wutz')
	scale = 195 / numpy.subtract(bounding_box[2:], bounding_box[:2]).max().clip(1, None)
	translation = (256 - numpy.add(bounding_box[2:], bounding_box[:2]) * scale) * 0.5
	rotated_matrix, rotated_size = create_rotated_matrix_and_size(face_angle, (256, 256))
	crop_vision_frame, affine_matrix = warp_face_by_translation(temp_vision_frame, translation, scale, (256, 256))
	crop_vision_frame = cv2.warpAffine(crop_vision_frame, rotated_matrix, rotated_size)
	crop_vision_frame = conditional_optimize_contrast(crop_vision_frame)
	crop_vision_frame = crop_vision_frame.transpose(2, 0, 1).astype(numpy.float32) / 255.0
	crop_vision_frame = numpy.expand_dims(crop_vision_frame, axis = 0)

	with conditional_thread_semaphore():
		prediction = face_landmarker.run(None,
		{
			'input': crop_vision_frame
		})[0]

	face_landmark_68 = prediction.reshape(-1, 3)[:, :2] / 64 * 256
	face_landmark_68 = transform_points(face_landmark_68, cv2.invertAffineTransform(rotated_matrix))
	face_landmark_68 = transform_points(face_landmark_68, cv2.invertAffineTransform(affine_matrix))
	face_landmark_score_68 = prediction.reshape(-1, 3)[:, 2].mean()
	return face_landmark_68, face_landmark_score_68


def conditional_optimize_contrast(crop_vision_frame : VisionFrame) -> VisionFrame:
	crop_vision_frame = cv2.cvtColor(crop_vision_frame, cv2.COLOR_RGB2Lab)
	if numpy.mean(crop_vision_frame[:, :, 0]) < 30:  # type:ignore[arg-type]
		crop_vision_frame[:, :, 0] = cv2.createCLAHE(clipLimit = 2).apply(crop_vision_frame[:, :, 0])
	crop_vision_frame = cv2.cvtColor(crop_vision_frame, cv2.COLOR_Lab2RGB)
	return crop_vision_frame


def estimate_face_landmark_68_5(face_landmark_5 : FaceLandmark5) -> FaceLandmark68:
	face_landmarker = get_inference_pool().get('face_landmarker_68_5')
	affine_matrix = estimate_matrix_by_face_landmark_5(face_landmark_5, 'ffhq_512', (1, 1))
	face_landmark_5 = cv2.transform(face_landmark_5.reshape(1, -1, 2), affine_matrix).reshape(-1, 2)

	with conditional_thread_semaphore():
		face_landmark_68_5 = face_landmarker.run(None,
		{
			'input': [ face_landmark_5 ]
		})[0][0]

	face_landmark_68_5 = cv2.transform(face_landmark_68_5.reshape(1, -1, 2), cv2.invertAffineTransform(affine_matrix)).reshape(-1, 2)
	return face_landmark_68_5