Spaces:
Build error
Build error
File size: 13,055 Bytes
a1da63c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
from argparse import ArgumentParser
from typing import List
import cv2
import numpy
import scipy
import facefusion.jobs.job_manager
import facefusion.jobs.job_store
import facefusion.processors.core as processors
from facefusion import config, content_analyser, face_classifier, face_detector, face_landmarker, face_masker, face_recognizer, inference_manager, logger, process_manager, state_manager, wording
from facefusion.common_helper import create_int_metavar, map_float
from facefusion.download import conditional_download_hashes, conditional_download_sources
from facefusion.face_analyser import get_many_faces, get_one_face
from facefusion.face_helper import paste_back, warp_face_by_face_landmark_5
from facefusion.face_masker import create_occlusion_mask, create_static_box_mask
from facefusion.face_selector import find_similar_faces, sort_and_filter_faces
from facefusion.face_store import get_reference_faces
from facefusion.filesystem import in_directory, is_image, is_video, resolve_relative_path, same_file_extension
from facefusion.processors import choices as processors_choices
from facefusion.processors.typing import ExpressionRestorerInputs
from facefusion.program_helper import find_argument_group
from facefusion.thread_helper import thread_semaphore
from facefusion.typing import Args, Face, InferencePool, ModelOptions, ModelSet, ProcessMode, QueuePayload, UpdateProgress, VisionFrame
from facefusion.vision import get_video_frame, read_image, read_static_image, write_image
MODEL_SET : ModelSet =\
{
'live_portrait':
{
'hashes':
{
'feature_extractor':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/live_portrait_feature_extractor.hash',
'path': resolve_relative_path('../.assets/models/live_portrait_feature_extractor.hash')
},
'motion_extractor':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/live_portrait_motion_extractor.hash',
'path': resolve_relative_path('../.assets/models/live_portrait_motion_extractor.hash')
},
'generator':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/live_portrait_generator.hash',
'path': resolve_relative_path('../.assets/models/live_portrait_generator.hash')
}
},
'sources':
{
'feature_extractor':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/live_portrait_feature_extractor.onnx',
'path': resolve_relative_path('../.assets/models/live_portrait_feature_extractor.onnx')
},
'motion_extractor':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/live_portrait_motion_extractor.onnx',
'path': resolve_relative_path('../.assets/models/live_portrait_motion_extractor.onnx')
},
'generator':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/live_portrait_generator.onnx',
'path': resolve_relative_path('../.assets/models/live_portrait_generator.onnx')
}
},
'template': 'arcface_128_v2',
'size': (512, 512)
}
}
def get_inference_pool() -> InferencePool:
model_sources = get_model_options().get('sources')
return inference_manager.get_inference_pool(__name__, model_sources)
def clear_inference_pool() -> None:
inference_manager.clear_inference_pool(__name__)
def get_model_options() -> ModelOptions:
return MODEL_SET[state_manager.get_item('expression_restorer_model')]
def register_args(program : ArgumentParser) -> None:
group_processors = find_argument_group(program, 'processors')
if group_processors:
group_processors.add_argument('--expression-restorer-model', help = wording.get('help.expression_restorer_model'), default = config.get_str_value('processors.expression_restorer_model', 'live_portrait'), choices = processors_choices.expression_restorer_models)
group_processors.add_argument('--expression-restorer-factor', help = wording.get('help.expression_restorer_factor'), type = int, default = config.get_int_value('processors.expression_restorer_factor', '100'), choices = processors_choices.expression_restorer_factor_range, metavar = create_int_metavar(processors_choices.expression_restorer_factor_range))
facefusion.jobs.job_store.register_step_keys([ 'expression_restorer_model','expression_restorer_factor' ])
def apply_args(args : Args) -> None:
state_manager.init_item('expression_restorer_model', args.get('expression_restorer_model'))
state_manager.init_item('expression_restorer_factor', args.get('expression_restorer_factor'))
def pre_check() -> bool:
download_directory_path = resolve_relative_path('../.assets/models')
model_hashes = get_model_options().get('hashes')
model_sources = get_model_options().get('sources')
return conditional_download_hashes(download_directory_path, model_hashes) and conditional_download_sources(download_directory_path, model_sources)
def pre_process(mode : ProcessMode) -> bool:
if mode in [ 'output', 'preview' ] and not is_image(state_manager.get_item('target_path')) and not is_video(state_manager.get_item('target_path')):
logger.error(wording.get('choose_image_or_video_target') + wording.get('exclamation_mark'), __name__.upper())
return False
if mode == 'output' and not in_directory(state_manager.get_item('output_path')):
logger.error(wording.get('specify_image_or_video_output') + wording.get('exclamation_mark'), __name__.upper())
return False
if mode == 'output' and not same_file_extension([ state_manager.get_item('target_path'), state_manager.get_item('output_path') ]):
logger.error(wording.get('match_target_and_output_extension') + wording.get('exclamation_mark'), __name__.upper())
return False
return True
def post_process() -> None:
read_static_image.cache_clear()
if state_manager.get_item('video_memory_strategy') in [ 'strict', 'moderate' ]:
clear_inference_pool()
if state_manager.get_item('video_memory_strategy') == 'strict':
content_analyser.clear_inference_pool()
face_classifier.clear_inference_pool()
face_detector.clear_inference_pool()
face_landmarker.clear_inference_pool()
face_masker.clear_inference_pool()
face_recognizer.clear_inference_pool()
def restore_expression(source_vision_frame : VisionFrame, target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame:
model_template = get_model_options().get('template')
model_size = get_model_options().get('size')
expression_restorer_factor = map_float(float(state_manager.get_item('expression_restorer_factor')), 0, 200, 0, 2)
source_vision_frame = cv2.resize(source_vision_frame, temp_vision_frame.shape[:2][::-1])
source_crop_vision_frame, _ = warp_face_by_face_landmark_5(source_vision_frame, target_face.landmark_set.get('5/68'), model_template, model_size)
target_crop_vision_frame, affine_matrix = warp_face_by_face_landmark_5(temp_vision_frame, target_face.landmark_set.get('5/68'), model_template, model_size)
box_mask = create_static_box_mask(target_crop_vision_frame.shape[:2][::-1], state_manager.get_item('face_mask_blur'), (0, 0, 0, 0))
crop_masks =\
[
box_mask
]
if 'occlusion' in state_manager.get_item('face_mask_types'):
occlusion_mask = create_occlusion_mask(target_crop_vision_frame)
crop_masks.append(occlusion_mask)
source_crop_vision_frame = prepare_crop_frame(source_crop_vision_frame)
target_crop_vision_frame = prepare_crop_frame(target_crop_vision_frame)
target_crop_vision_frame = apply_restore(source_crop_vision_frame, target_crop_vision_frame, expression_restorer_factor)
target_crop_vision_frame = normalize_crop_frame(target_crop_vision_frame)
crop_mask = numpy.minimum.reduce(crop_masks).clip(0, 1)
temp_vision_frame = paste_back(temp_vision_frame, target_crop_vision_frame, crop_mask, affine_matrix)
return temp_vision_frame
def apply_restore(source_crop_vision_frame : VisionFrame, target_crop_vision_frame : VisionFrame, expression_restorer_factor : float) -> VisionFrame:
feature_extractor = get_inference_pool().get('feature_extractor')
motion_extractor = get_inference_pool().get('motion_extractor')
generator = get_inference_pool().get('generator')
with thread_semaphore():
feature_volume = feature_extractor.run(None,
{
'input': target_crop_vision_frame
})[0]
with thread_semaphore():
source_expression = motion_extractor.run(None,
{
'input': source_crop_vision_frame
})[5]
with thread_semaphore():
target_pitch, target_yaw, target_roll, target_scale, target_translation, target_expression, target_motion_points = motion_extractor.run(None,
{
'input': target_crop_vision_frame
})
target_rotation_matrix = scipy.spatial.transform.Rotation.from_euler('xyz', [ target_pitch, target_yaw, target_roll ], degrees = True).as_matrix()
target_rotation_matrix = target_rotation_matrix.T.astype(numpy.float32)
target_motion_points_transform = target_scale * (target_motion_points @ target_rotation_matrix + target_expression) + target_translation
expression = source_expression * expression_restorer_factor + target_expression * (1 - expression_restorer_factor)
expression[:, [ 0, 4, 5, 8, 9 ]] = target_expression[:, [ 0, 4, 5, 8, 9 ]]
source_motion_points = target_scale * (target_motion_points @ target_rotation_matrix + expression) + target_translation
with thread_semaphore():
crop_vision_frame = generator.run(None,
{
'feature_volume': feature_volume,
'target': target_motion_points_transform,
'source': source_motion_points
})[0][0]
return crop_vision_frame
def prepare_crop_frame(crop_vision_frame : VisionFrame) -> VisionFrame:
crop_vision_frame = cv2.resize(crop_vision_frame, (256, 256), interpolation = cv2.INTER_AREA)
crop_vision_frame = crop_vision_frame[:, :, ::-1] / 255.0
crop_vision_frame = numpy.expand_dims(crop_vision_frame.transpose(2, 0, 1), axis = 0).astype(numpy.float32)
return crop_vision_frame
def normalize_crop_frame(crop_vision_frame : VisionFrame) -> VisionFrame:
crop_vision_frame = crop_vision_frame.transpose(1, 2, 0).clip(0, 1)
crop_vision_frame = (crop_vision_frame * 255.0)
crop_vision_frame = crop_vision_frame.astype(numpy.uint8)[:, :, ::-1]
return crop_vision_frame
def get_reference_frame(source_face : Face, target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame:
pass
def process_frame(inputs : ExpressionRestorerInputs) -> VisionFrame:
reference_faces = inputs.get('reference_faces')
source_vision_frame = inputs.get('source_vision_frame')
target_vision_frame = inputs.get('target_vision_frame')
many_faces = sort_and_filter_faces(get_many_faces([ target_vision_frame ]))
if state_manager.get_item('face_selector_mode') == 'many':
if many_faces:
for target_face in many_faces:
target_vision_frame = restore_expression(source_vision_frame, target_face, target_vision_frame)
if state_manager.get_item('face_selector_mode') == 'one':
target_face = get_one_face(many_faces)
if target_face:
target_vision_frame = restore_expression(source_vision_frame, target_face, target_vision_frame)
if state_manager.get_item('face_selector_mode') == 'reference':
similar_faces = find_similar_faces(many_faces, reference_faces, state_manager.get_item('reference_face_distance'))
if similar_faces:
for similar_face in similar_faces:
target_vision_frame = restore_expression(source_vision_frame, similar_face, target_vision_frame)
return target_vision_frame
def process_frames(source_path : List[str], queue_payloads : List[QueuePayload], update_progress : UpdateProgress) -> None:
reference_faces = get_reference_faces() if 'reference' in state_manager.get_item('face_selector_mode') else None
for queue_payload in process_manager.manage(queue_payloads):
frame_number = queue_payload.get('frame_number')
if state_manager.get_item('trim_frame_start'):
frame_number += state_manager.get_item('trim_frame_start')
source_vision_frame = get_video_frame(state_manager.get_item('target_path'), frame_number)
target_vision_path = queue_payload.get('frame_path')
target_vision_frame = read_image(target_vision_path)
output_vision_frame = process_frame(
{
'reference_faces': reference_faces,
'source_vision_frame': source_vision_frame,
'target_vision_frame': target_vision_frame
})
write_image(target_vision_path, output_vision_frame)
update_progress(1)
def process_image(source_path : str, target_path : str, output_path : str) -> None:
reference_faces = get_reference_faces() if 'reference' in state_manager.get_item('face_selector_mode') else None
source_vision_frame = read_static_image(state_manager.get_item('target_path'))
target_vision_frame = read_static_image(target_path)
output_vision_frame = process_frame(
{
'reference_faces': reference_faces,
'source_vision_frame': source_vision_frame,
'target_vision_frame': target_vision_frame
})
write_image(output_path, output_vision_frame)
def process_video(source_paths : List[str], temp_frame_paths : List[str]) -> None:
processors.multi_process_frames(None, temp_frame_paths, process_frames)
|