File size: 13,055 Bytes
a1da63c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
from argparse import ArgumentParser
from typing import List

import cv2
import numpy
import scipy

import facefusion.jobs.job_manager
import facefusion.jobs.job_store
import facefusion.processors.core as processors
from facefusion import config, content_analyser, face_classifier, face_detector, face_landmarker, face_masker, face_recognizer, inference_manager, logger, process_manager, state_manager, wording
from facefusion.common_helper import create_int_metavar, map_float
from facefusion.download import conditional_download_hashes, conditional_download_sources
from facefusion.face_analyser import get_many_faces, get_one_face
from facefusion.face_helper import paste_back, warp_face_by_face_landmark_5
from facefusion.face_masker import create_occlusion_mask, create_static_box_mask
from facefusion.face_selector import find_similar_faces, sort_and_filter_faces
from facefusion.face_store import get_reference_faces
from facefusion.filesystem import in_directory, is_image, is_video, resolve_relative_path, same_file_extension
from facefusion.processors import choices as processors_choices
from facefusion.processors.typing import ExpressionRestorerInputs
from facefusion.program_helper import find_argument_group
from facefusion.thread_helper import thread_semaphore
from facefusion.typing import Args, Face, InferencePool, ModelOptions, ModelSet, ProcessMode, QueuePayload, UpdateProgress, VisionFrame
from facefusion.vision import get_video_frame, read_image, read_static_image, write_image

MODEL_SET : ModelSet =\
{
	'live_portrait':
	{
		'hashes':
		{
			'feature_extractor':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/live_portrait_feature_extractor.hash',
				'path': resolve_relative_path('../.assets/models/live_portrait_feature_extractor.hash')
			},
			'motion_extractor':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/live_portrait_motion_extractor.hash',
				'path': resolve_relative_path('../.assets/models/live_portrait_motion_extractor.hash')
			},
			'generator':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/live_portrait_generator.hash',
				'path': resolve_relative_path('../.assets/models/live_portrait_generator.hash')
			}
		},
		'sources':
		{
			'feature_extractor':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/live_portrait_feature_extractor.onnx',
				'path': resolve_relative_path('../.assets/models/live_portrait_feature_extractor.onnx')
			},
			'motion_extractor':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/live_portrait_motion_extractor.onnx',
				'path': resolve_relative_path('../.assets/models/live_portrait_motion_extractor.onnx')
			},
			'generator':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/live_portrait_generator.onnx',
				'path': resolve_relative_path('../.assets/models/live_portrait_generator.onnx')
			}
		},
		'template': 'arcface_128_v2',
		'size': (512, 512)
	}
}


def get_inference_pool() -> InferencePool:
	model_sources = get_model_options().get('sources')
	return inference_manager.get_inference_pool(__name__, model_sources)


def clear_inference_pool() -> None:
	inference_manager.clear_inference_pool(__name__)


def get_model_options() -> ModelOptions:
	return MODEL_SET[state_manager.get_item('expression_restorer_model')]


def register_args(program : ArgumentParser) -> None:
	group_processors = find_argument_group(program, 'processors')
	if group_processors:
		group_processors.add_argument('--expression-restorer-model', help = wording.get('help.expression_restorer_model'), default = config.get_str_value('processors.expression_restorer_model', 'live_portrait'), choices = processors_choices.expression_restorer_models)
		group_processors.add_argument('--expression-restorer-factor', help = wording.get('help.expression_restorer_factor'), type = int, default = config.get_int_value('processors.expression_restorer_factor', '100'), choices = processors_choices.expression_restorer_factor_range, metavar = create_int_metavar(processors_choices.expression_restorer_factor_range))
		facefusion.jobs.job_store.register_step_keys([ 'expression_restorer_model','expression_restorer_factor' ])


def apply_args(args : Args) -> None:
	state_manager.init_item('expression_restorer_model', args.get('expression_restorer_model'))
	state_manager.init_item('expression_restorer_factor', args.get('expression_restorer_factor'))


def pre_check() -> bool:
	download_directory_path = resolve_relative_path('../.assets/models')
	model_hashes = get_model_options().get('hashes')
	model_sources = get_model_options().get('sources')

	return conditional_download_hashes(download_directory_path, model_hashes) and conditional_download_sources(download_directory_path, model_sources)


def pre_process(mode : ProcessMode) -> bool:
	if mode in [ 'output', 'preview' ] and not is_image(state_manager.get_item('target_path')) and not is_video(state_manager.get_item('target_path')):
		logger.error(wording.get('choose_image_or_video_target') + wording.get('exclamation_mark'), __name__.upper())
		return False
	if mode == 'output' and not in_directory(state_manager.get_item('output_path')):
		logger.error(wording.get('specify_image_or_video_output') + wording.get('exclamation_mark'), __name__.upper())
		return False
	if mode == 'output' and not same_file_extension([ state_manager.get_item('target_path'), state_manager.get_item('output_path') ]):
		logger.error(wording.get('match_target_and_output_extension') + wording.get('exclamation_mark'), __name__.upper())
		return False
	return True


def post_process() -> None:
	read_static_image.cache_clear()
	if state_manager.get_item('video_memory_strategy') in [ 'strict', 'moderate' ]:
		clear_inference_pool()
	if state_manager.get_item('video_memory_strategy') == 'strict':
		content_analyser.clear_inference_pool()
		face_classifier.clear_inference_pool()
		face_detector.clear_inference_pool()
		face_landmarker.clear_inference_pool()
		face_masker.clear_inference_pool()
		face_recognizer.clear_inference_pool()


def restore_expression(source_vision_frame : VisionFrame, target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame:
	model_template = get_model_options().get('template')
	model_size = get_model_options().get('size')
	expression_restorer_factor = map_float(float(state_manager.get_item('expression_restorer_factor')), 0, 200, 0, 2)
	source_vision_frame = cv2.resize(source_vision_frame, temp_vision_frame.shape[:2][::-1])
	source_crop_vision_frame, _ = warp_face_by_face_landmark_5(source_vision_frame, target_face.landmark_set.get('5/68'), model_template, model_size)
	target_crop_vision_frame, affine_matrix = warp_face_by_face_landmark_5(temp_vision_frame, target_face.landmark_set.get('5/68'), model_template, model_size)
	box_mask = create_static_box_mask(target_crop_vision_frame.shape[:2][::-1], state_manager.get_item('face_mask_blur'), (0, 0, 0, 0))
	crop_masks =\
	[
		box_mask
	]

	if 'occlusion' in state_manager.get_item('face_mask_types'):
		occlusion_mask = create_occlusion_mask(target_crop_vision_frame)
		crop_masks.append(occlusion_mask)
	source_crop_vision_frame = prepare_crop_frame(source_crop_vision_frame)
	target_crop_vision_frame = prepare_crop_frame(target_crop_vision_frame)
	target_crop_vision_frame = apply_restore(source_crop_vision_frame, target_crop_vision_frame, expression_restorer_factor)
	target_crop_vision_frame = normalize_crop_frame(target_crop_vision_frame)
	crop_mask = numpy.minimum.reduce(crop_masks).clip(0, 1)
	temp_vision_frame = paste_back(temp_vision_frame, target_crop_vision_frame, crop_mask, affine_matrix)
	return temp_vision_frame


def apply_restore(source_crop_vision_frame : VisionFrame, target_crop_vision_frame : VisionFrame, expression_restorer_factor : float) -> VisionFrame:
	feature_extractor = get_inference_pool().get('feature_extractor')
	motion_extractor = get_inference_pool().get('motion_extractor')
	generator = get_inference_pool().get('generator')

	with thread_semaphore():
		feature_volume = feature_extractor.run(None,
		{
			'input': target_crop_vision_frame
		})[0]

	with thread_semaphore():
		source_expression = motion_extractor.run(None,
		{
			'input': source_crop_vision_frame
		})[5]

	with thread_semaphore():
		target_pitch, target_yaw, target_roll, target_scale, target_translation, target_expression, target_motion_points = motion_extractor.run(None,
		{
			'input': target_crop_vision_frame
		})

	target_rotation_matrix = scipy.spatial.transform.Rotation.from_euler('xyz', [ target_pitch, target_yaw, target_roll ], degrees = True).as_matrix()
	target_rotation_matrix = target_rotation_matrix.T.astype(numpy.float32)
	target_motion_points_transform = target_scale * (target_motion_points @ target_rotation_matrix + target_expression) + target_translation

	expression = source_expression * expression_restorer_factor + target_expression * (1 - expression_restorer_factor)
	expression[:, [ 0, 4, 5, 8, 9 ]] = target_expression[:, [ 0, 4, 5, 8, 9 ]]
	source_motion_points = target_scale * (target_motion_points @ target_rotation_matrix + expression) + target_translation

	with thread_semaphore():
		crop_vision_frame = generator.run(None,
		{
			'feature_volume': feature_volume,
			'target': target_motion_points_transform,
			'source': source_motion_points
		})[0][0]

	return crop_vision_frame


def prepare_crop_frame(crop_vision_frame : VisionFrame) -> VisionFrame:
	crop_vision_frame = cv2.resize(crop_vision_frame, (256, 256), interpolation = cv2.INTER_AREA)
	crop_vision_frame = crop_vision_frame[:, :, ::-1] / 255.0
	crop_vision_frame = numpy.expand_dims(crop_vision_frame.transpose(2, 0, 1), axis = 0).astype(numpy.float32)
	return crop_vision_frame


def normalize_crop_frame(crop_vision_frame : VisionFrame) -> VisionFrame:
	crop_vision_frame = crop_vision_frame.transpose(1, 2, 0).clip(0, 1)
	crop_vision_frame = (crop_vision_frame * 255.0)
	crop_vision_frame = crop_vision_frame.astype(numpy.uint8)[:, :, ::-1]
	return crop_vision_frame


def get_reference_frame(source_face : Face, target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame:
	pass


def process_frame(inputs : ExpressionRestorerInputs) -> VisionFrame:
	reference_faces = inputs.get('reference_faces')
	source_vision_frame = inputs.get('source_vision_frame')
	target_vision_frame = inputs.get('target_vision_frame')
	many_faces = sort_and_filter_faces(get_many_faces([ target_vision_frame ]))

	if state_manager.get_item('face_selector_mode') == 'many':
		if many_faces:
			for target_face in many_faces:
				target_vision_frame = restore_expression(source_vision_frame, target_face, target_vision_frame)
	if state_manager.get_item('face_selector_mode') == 'one':
		target_face = get_one_face(many_faces)
		if target_face:
			target_vision_frame = restore_expression(source_vision_frame, target_face, target_vision_frame)
	if state_manager.get_item('face_selector_mode') == 'reference':
		similar_faces = find_similar_faces(many_faces, reference_faces, state_manager.get_item('reference_face_distance'))
		if similar_faces:
			for similar_face in similar_faces:
				target_vision_frame = restore_expression(source_vision_frame, similar_face, target_vision_frame)
	return target_vision_frame


def process_frames(source_path : List[str], queue_payloads : List[QueuePayload], update_progress : UpdateProgress) -> None:
	reference_faces = get_reference_faces() if 'reference' in state_manager.get_item('face_selector_mode') else None

	for queue_payload in process_manager.manage(queue_payloads):
		frame_number = queue_payload.get('frame_number')
		if state_manager.get_item('trim_frame_start'):
			frame_number += state_manager.get_item('trim_frame_start')
		source_vision_frame = get_video_frame(state_manager.get_item('target_path'), frame_number)
		target_vision_path = queue_payload.get('frame_path')
		target_vision_frame = read_image(target_vision_path)
		output_vision_frame = process_frame(
		{
			'reference_faces': reference_faces,
			'source_vision_frame': source_vision_frame,
			'target_vision_frame': target_vision_frame
		})
		write_image(target_vision_path, output_vision_frame)
		update_progress(1)


def process_image(source_path : str, target_path : str, output_path : str) -> None:
	reference_faces = get_reference_faces() if 'reference' in state_manager.get_item('face_selector_mode') else None
	source_vision_frame = read_static_image(state_manager.get_item('target_path'))
	target_vision_frame = read_static_image(target_path)
	output_vision_frame = process_frame(
	{
		'reference_faces': reference_faces,
		'source_vision_frame': source_vision_frame,
		'target_vision_frame': target_vision_frame
	})
	write_image(output_path, output_vision_frame)


def process_video(source_paths : List[str], temp_frame_paths : List[str]) -> None:
	processors.multi_process_frames(None, temp_frame_paths, process_frames)