File size: 10,571 Bytes
a1da63c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
from argparse import ArgumentParser
from typing import List

import cv2
import numpy

import facefusion.jobs.job_manager
import facefusion.jobs.job_store
import facefusion.processors.core as processors
from facefusion import config, content_analyser, face_classifier, face_detector, face_landmarker, face_masker, face_recognizer, logger, process_manager, state_manager, wording
from facefusion.face_analyser import get_many_faces, get_one_face
from facefusion.face_helper import warp_face_by_face_landmark_5
from facefusion.face_masker import create_occlusion_mask, create_region_mask, create_static_box_mask
from facefusion.face_selector import categorize_age, categorize_gender, find_similar_faces, sort_and_filter_faces
from facefusion.face_store import get_reference_faces
from facefusion.filesystem import in_directory, same_file_extension
from facefusion.processors import choices as processors_choices
from facefusion.processors.typing import FaceDebuggerInputs
from facefusion.program_helper import find_argument_group
from facefusion.typing import Args, Face, ProcessMode, QueuePayload, UpdateProgress, VisionFrame
from facefusion.vision import read_image, read_static_image, write_image


def get_inference_pool() -> None:
	pass


def clear_inference_pool() -> None:
	pass


def register_args(program : ArgumentParser) -> None:
	group_processors = find_argument_group(program, 'processors')
	if group_processors:
		group_processors.add_argument('--face-debugger-items', help = wording.get('help.face_debugger_items').format(choices = ', '.join(processors_choices.face_debugger_items)), default = config.get_str_list('processors.face_debugger_items', 'face-landmark-5/68 face-mask'), choices = processors_choices.face_debugger_items, nargs = '+', metavar = 'FACE_DEBUGGER_ITEMS')
		facefusion.jobs.job_store.register_step_keys([ 'face_debugger_items' ])


def apply_args(args : Args) -> None:
	state_manager.init_item('face_debugger_items', args.get('face_debugger_items'))


def pre_check() -> bool:
	return True


def pre_process(mode : ProcessMode) -> bool:
	if mode == 'output' and not in_directory(state_manager.get_item('output_path')):
		logger.error(wording.get('specify_image_or_video_output') + wording.get('exclamation_mark'), __name__.upper())
		return False
	if mode == 'output' and not same_file_extension([ state_manager.get_item('target_path'), state_manager.get_item('output_path') ]):
		logger.error(wording.get('match_target_and_output_extension') + wording.get('exclamation_mark'), __name__.upper())
		return False
	return True


def post_process() -> None:
	read_static_image.cache_clear()
	if state_manager.get_item('video_memory_strategy') == 'strict':
		content_analyser.clear_inference_pool()
		face_classifier.clear_inference_pool()
		face_detector.clear_inference_pool()
		face_landmarker.clear_inference_pool()
		face_masker.clear_inference_pool()
		face_recognizer.clear_inference_pool()


def debug_face(target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame:
	primary_color = (0, 0, 255)
	primary_light_color = (100, 100, 255)
	secondary_color = (0, 255, 0)
	tertiary_color = (255, 255, 0)
	bounding_box = target_face.bounding_box.astype(numpy.int32)
	temp_vision_frame = temp_vision_frame.copy()
	has_face_landmark_5_fallback = numpy.array_equal(target_face.landmark_set.get('5'), target_face.landmark_set.get('5/68'))
	has_face_landmark_68_fallback = numpy.array_equal(target_face.landmark_set.get('68'), target_face.landmark_set.get('68/5'))
	face_debugger_items = state_manager.get_item('face_debugger_items')

	if 'bounding-box' in face_debugger_items:
		x1, y1, x2, y2 = bounding_box
		cv2.rectangle(temp_vision_frame, (x1, y1), (x2, y2), primary_color, 2)

		if target_face.angle == 0:
			cv2.line(temp_vision_frame, (x1, y1), (x2, y1), primary_light_color, 3)
		elif target_face.angle == 180:
			cv2.line(temp_vision_frame, (x1, y2), (x2, y2), primary_light_color, 3)
		elif target_face.angle == 90:
			cv2.line(temp_vision_frame, (x2, y1), (x2, y2), primary_light_color, 3)
		elif target_face.angle == 270:
			cv2.line(temp_vision_frame, (x1, y1), (x1, y2), primary_light_color, 3)

	if 'face-mask' in face_debugger_items:
		crop_vision_frame, affine_matrix = warp_face_by_face_landmark_5(temp_vision_frame, target_face.landmark_set.get('5/68'), 'arcface_128_v2', (512, 512))
		inverse_matrix = cv2.invertAffineTransform(affine_matrix)
		temp_size = temp_vision_frame.shape[:2][::-1]
		crop_masks = []

		if 'box' in state_manager.get_item('face_mask_types'):
			box_mask = create_static_box_mask(crop_vision_frame.shape[:2][::-1], 0, state_manager.get_item('face_mask_padding'))
			crop_masks.append(box_mask)
		if 'occlusion' in state_manager.get_item('face_mask_types'):
			occlusion_mask = create_occlusion_mask(crop_vision_frame)
			crop_masks.append(occlusion_mask)
		if 'region' in state_manager.get_item('face_mask_types'):
			region_mask = create_region_mask(crop_vision_frame, state_manager.get_item('face_mask_regions'))
			crop_masks.append(region_mask)

		crop_mask = numpy.minimum.reduce(crop_masks).clip(0, 1)
		crop_mask = (crop_mask * 255).astype(numpy.uint8)
		inverse_vision_frame = cv2.warpAffine(crop_mask, inverse_matrix, temp_size)
		inverse_vision_frame = cv2.threshold(inverse_vision_frame, 100, 255, cv2.THRESH_BINARY)[1]
		inverse_vision_frame[inverse_vision_frame > 0] = 255 #type:ignore[operator]
		inverse_contours = cv2.findContours(inverse_vision_frame, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)[0]
		cv2.drawContours(temp_vision_frame, inverse_contours, -1, tertiary_color if has_face_landmark_5_fallback else secondary_color, 2)

	if 'face-landmark-5' in face_debugger_items and numpy.any(target_face.landmark_set.get('5')):
		face_landmark_5 = target_face.landmark_set.get('5').astype(numpy.int32)
		for index in range(face_landmark_5.shape[0]):
			cv2.circle(temp_vision_frame, (face_landmark_5[index][0], face_landmark_5[index][1]), 3, primary_color, -1)

	if 'face-landmark-5/68' in face_debugger_items and numpy.any(target_face.landmark_set.get('5/68')):
		face_landmark_5_68 = target_face.landmark_set.get('5/68').astype(numpy.int32)
		for index in range(face_landmark_5_68.shape[0]):
			cv2.circle(temp_vision_frame, (face_landmark_5_68[index][0], face_landmark_5_68[index][1]), 3, tertiary_color if has_face_landmark_5_fallback else secondary_color, -1)

	if 'face-landmark-68' in face_debugger_items and numpy.any(target_face.landmark_set.get('68')):
		face_landmark_68 = target_face.landmark_set.get('68').astype(numpy.int32)
		for index in range(face_landmark_68.shape[0]):
			cv2.circle(temp_vision_frame, (face_landmark_68[index][0], face_landmark_68[index][1]), 3, tertiary_color if has_face_landmark_68_fallback else secondary_color, -1)

	if 'face-landmark-68/5' in face_debugger_items and numpy.any(target_face.landmark_set.get('68')):
		face_landmark_68 = target_face.landmark_set.get('68/5').astype(numpy.int32)
		for index in range(face_landmark_68.shape[0]):
			cv2.circle(temp_vision_frame, (face_landmark_68[index][0], face_landmark_68[index][1]), 3, primary_color, -1)

	if bounding_box[3] - bounding_box[1] > 50 and bounding_box[2] - bounding_box[0] > 50:
		top = bounding_box[1]
		left = bounding_box[0] - 20

		if 'face-detector-score' in face_debugger_items:
			face_score_text = str(round(target_face.score_set.get('detector'), 2))
			top = top + 20
			cv2.putText(temp_vision_frame, face_score_text, (left, top), cv2.FONT_HERSHEY_SIMPLEX, 0.5, primary_color, 2)
		if 'face-landmarker-score' in face_debugger_items:
			face_score_text = str(round(target_face.score_set.get('landmarker'), 2))
			top = top + 20
			cv2.putText(temp_vision_frame, face_score_text, (left, top), cv2.FONT_HERSHEY_SIMPLEX, 0.5, tertiary_color if has_face_landmark_5_fallback else secondary_color, 2)
		if 'age' in face_debugger_items:
			face_age_text = categorize_age(target_face.age)
			top = top + 20
			cv2.putText(temp_vision_frame, face_age_text, (left, top), cv2.FONT_HERSHEY_SIMPLEX, 0.5, primary_color, 2)
		if 'gender' in face_debugger_items:
			face_gender_text = categorize_gender(target_face.gender)
			top = top + 20
			cv2.putText(temp_vision_frame, face_gender_text, (left, top), cv2.FONT_HERSHEY_SIMPLEX, 0.5, primary_color, 2)

	return temp_vision_frame


def get_reference_frame(source_face : Face, target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame:
	pass


def process_frame(inputs : FaceDebuggerInputs) -> VisionFrame:
	reference_faces = inputs.get('reference_faces')
	target_vision_frame = inputs.get('target_vision_frame')
	many_faces = sort_and_filter_faces(get_many_faces([ target_vision_frame ]))

	if state_manager.get_item('face_selector_mode') == 'many':
		if many_faces:
			for target_face in many_faces:
				target_vision_frame = debug_face(target_face, target_vision_frame)
	if state_manager.get_item('face_selector_mode') == 'one':
		target_face = get_one_face(many_faces)
		if target_face:
			target_vision_frame = debug_face(target_face, target_vision_frame)
	if state_manager.get_item('face_selector_mode') == 'reference':
		similar_faces = find_similar_faces(many_faces, reference_faces, state_manager.get_item('reference_face_distance'))
		if similar_faces:
			for similar_face in similar_faces:
				target_vision_frame = debug_face(similar_face, target_vision_frame)
	return target_vision_frame


def process_frames(source_paths : List[str], queue_payloads : List[QueuePayload], update_progress : UpdateProgress) -> None:
	reference_faces = get_reference_faces() if 'reference' in state_manager.get_item('face_selector_mode') else None

	for queue_payload in process_manager.manage(queue_payloads):
		target_vision_path = queue_payload['frame_path']
		target_vision_frame = read_image(target_vision_path)
		output_vision_frame = process_frame(
		{
			'reference_faces': reference_faces,
			'target_vision_frame': target_vision_frame
		})
		write_image(target_vision_path, output_vision_frame)
		update_progress(1)


def process_image(source_paths : List[str], target_path : str, output_path : str) -> None:
	reference_faces = get_reference_faces() if 'reference' in state_manager.get_item('face_selector_mode') else None
	target_vision_frame = read_static_image(target_path)
	output_vision_frame = process_frame(
	{
		'reference_faces': reference_faces,
		'target_vision_frame': target_vision_frame
	})
	write_image(output_path, output_vision_frame)


def process_video(source_paths : List[str], temp_frame_paths : List[str]) -> None:
	processors.multi_process_frames(source_paths, temp_frame_paths, process_frames)