Spaces:
Build error
Build error
File size: 10,571 Bytes
a1da63c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
from argparse import ArgumentParser
from typing import List
import cv2
import numpy
import facefusion.jobs.job_manager
import facefusion.jobs.job_store
import facefusion.processors.core as processors
from facefusion import config, content_analyser, face_classifier, face_detector, face_landmarker, face_masker, face_recognizer, logger, process_manager, state_manager, wording
from facefusion.face_analyser import get_many_faces, get_one_face
from facefusion.face_helper import warp_face_by_face_landmark_5
from facefusion.face_masker import create_occlusion_mask, create_region_mask, create_static_box_mask
from facefusion.face_selector import categorize_age, categorize_gender, find_similar_faces, sort_and_filter_faces
from facefusion.face_store import get_reference_faces
from facefusion.filesystem import in_directory, same_file_extension
from facefusion.processors import choices as processors_choices
from facefusion.processors.typing import FaceDebuggerInputs
from facefusion.program_helper import find_argument_group
from facefusion.typing import Args, Face, ProcessMode, QueuePayload, UpdateProgress, VisionFrame
from facefusion.vision import read_image, read_static_image, write_image
def get_inference_pool() -> None:
pass
def clear_inference_pool() -> None:
pass
def register_args(program : ArgumentParser) -> None:
group_processors = find_argument_group(program, 'processors')
if group_processors:
group_processors.add_argument('--face-debugger-items', help = wording.get('help.face_debugger_items').format(choices = ', '.join(processors_choices.face_debugger_items)), default = config.get_str_list('processors.face_debugger_items', 'face-landmark-5/68 face-mask'), choices = processors_choices.face_debugger_items, nargs = '+', metavar = 'FACE_DEBUGGER_ITEMS')
facefusion.jobs.job_store.register_step_keys([ 'face_debugger_items' ])
def apply_args(args : Args) -> None:
state_manager.init_item('face_debugger_items', args.get('face_debugger_items'))
def pre_check() -> bool:
return True
def pre_process(mode : ProcessMode) -> bool:
if mode == 'output' and not in_directory(state_manager.get_item('output_path')):
logger.error(wording.get('specify_image_or_video_output') + wording.get('exclamation_mark'), __name__.upper())
return False
if mode == 'output' and not same_file_extension([ state_manager.get_item('target_path'), state_manager.get_item('output_path') ]):
logger.error(wording.get('match_target_and_output_extension') + wording.get('exclamation_mark'), __name__.upper())
return False
return True
def post_process() -> None:
read_static_image.cache_clear()
if state_manager.get_item('video_memory_strategy') == 'strict':
content_analyser.clear_inference_pool()
face_classifier.clear_inference_pool()
face_detector.clear_inference_pool()
face_landmarker.clear_inference_pool()
face_masker.clear_inference_pool()
face_recognizer.clear_inference_pool()
def debug_face(target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame:
primary_color = (0, 0, 255)
primary_light_color = (100, 100, 255)
secondary_color = (0, 255, 0)
tertiary_color = (255, 255, 0)
bounding_box = target_face.bounding_box.astype(numpy.int32)
temp_vision_frame = temp_vision_frame.copy()
has_face_landmark_5_fallback = numpy.array_equal(target_face.landmark_set.get('5'), target_face.landmark_set.get('5/68'))
has_face_landmark_68_fallback = numpy.array_equal(target_face.landmark_set.get('68'), target_face.landmark_set.get('68/5'))
face_debugger_items = state_manager.get_item('face_debugger_items')
if 'bounding-box' in face_debugger_items:
x1, y1, x2, y2 = bounding_box
cv2.rectangle(temp_vision_frame, (x1, y1), (x2, y2), primary_color, 2)
if target_face.angle == 0:
cv2.line(temp_vision_frame, (x1, y1), (x2, y1), primary_light_color, 3)
elif target_face.angle == 180:
cv2.line(temp_vision_frame, (x1, y2), (x2, y2), primary_light_color, 3)
elif target_face.angle == 90:
cv2.line(temp_vision_frame, (x2, y1), (x2, y2), primary_light_color, 3)
elif target_face.angle == 270:
cv2.line(temp_vision_frame, (x1, y1), (x1, y2), primary_light_color, 3)
if 'face-mask' in face_debugger_items:
crop_vision_frame, affine_matrix = warp_face_by_face_landmark_5(temp_vision_frame, target_face.landmark_set.get('5/68'), 'arcface_128_v2', (512, 512))
inverse_matrix = cv2.invertAffineTransform(affine_matrix)
temp_size = temp_vision_frame.shape[:2][::-1]
crop_masks = []
if 'box' in state_manager.get_item('face_mask_types'):
box_mask = create_static_box_mask(crop_vision_frame.shape[:2][::-1], 0, state_manager.get_item('face_mask_padding'))
crop_masks.append(box_mask)
if 'occlusion' in state_manager.get_item('face_mask_types'):
occlusion_mask = create_occlusion_mask(crop_vision_frame)
crop_masks.append(occlusion_mask)
if 'region' in state_manager.get_item('face_mask_types'):
region_mask = create_region_mask(crop_vision_frame, state_manager.get_item('face_mask_regions'))
crop_masks.append(region_mask)
crop_mask = numpy.minimum.reduce(crop_masks).clip(0, 1)
crop_mask = (crop_mask * 255).astype(numpy.uint8)
inverse_vision_frame = cv2.warpAffine(crop_mask, inverse_matrix, temp_size)
inverse_vision_frame = cv2.threshold(inverse_vision_frame, 100, 255, cv2.THRESH_BINARY)[1]
inverse_vision_frame[inverse_vision_frame > 0] = 255 #type:ignore[operator]
inverse_contours = cv2.findContours(inverse_vision_frame, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)[0]
cv2.drawContours(temp_vision_frame, inverse_contours, -1, tertiary_color if has_face_landmark_5_fallback else secondary_color, 2)
if 'face-landmark-5' in face_debugger_items and numpy.any(target_face.landmark_set.get('5')):
face_landmark_5 = target_face.landmark_set.get('5').astype(numpy.int32)
for index in range(face_landmark_5.shape[0]):
cv2.circle(temp_vision_frame, (face_landmark_5[index][0], face_landmark_5[index][1]), 3, primary_color, -1)
if 'face-landmark-5/68' in face_debugger_items and numpy.any(target_face.landmark_set.get('5/68')):
face_landmark_5_68 = target_face.landmark_set.get('5/68').astype(numpy.int32)
for index in range(face_landmark_5_68.shape[0]):
cv2.circle(temp_vision_frame, (face_landmark_5_68[index][0], face_landmark_5_68[index][1]), 3, tertiary_color if has_face_landmark_5_fallback else secondary_color, -1)
if 'face-landmark-68' in face_debugger_items and numpy.any(target_face.landmark_set.get('68')):
face_landmark_68 = target_face.landmark_set.get('68').astype(numpy.int32)
for index in range(face_landmark_68.shape[0]):
cv2.circle(temp_vision_frame, (face_landmark_68[index][0], face_landmark_68[index][1]), 3, tertiary_color if has_face_landmark_68_fallback else secondary_color, -1)
if 'face-landmark-68/5' in face_debugger_items and numpy.any(target_face.landmark_set.get('68')):
face_landmark_68 = target_face.landmark_set.get('68/5').astype(numpy.int32)
for index in range(face_landmark_68.shape[0]):
cv2.circle(temp_vision_frame, (face_landmark_68[index][0], face_landmark_68[index][1]), 3, primary_color, -1)
if bounding_box[3] - bounding_box[1] > 50 and bounding_box[2] - bounding_box[0] > 50:
top = bounding_box[1]
left = bounding_box[0] - 20
if 'face-detector-score' in face_debugger_items:
face_score_text = str(round(target_face.score_set.get('detector'), 2))
top = top + 20
cv2.putText(temp_vision_frame, face_score_text, (left, top), cv2.FONT_HERSHEY_SIMPLEX, 0.5, primary_color, 2)
if 'face-landmarker-score' in face_debugger_items:
face_score_text = str(round(target_face.score_set.get('landmarker'), 2))
top = top + 20
cv2.putText(temp_vision_frame, face_score_text, (left, top), cv2.FONT_HERSHEY_SIMPLEX, 0.5, tertiary_color if has_face_landmark_5_fallback else secondary_color, 2)
if 'age' in face_debugger_items:
face_age_text = categorize_age(target_face.age)
top = top + 20
cv2.putText(temp_vision_frame, face_age_text, (left, top), cv2.FONT_HERSHEY_SIMPLEX, 0.5, primary_color, 2)
if 'gender' in face_debugger_items:
face_gender_text = categorize_gender(target_face.gender)
top = top + 20
cv2.putText(temp_vision_frame, face_gender_text, (left, top), cv2.FONT_HERSHEY_SIMPLEX, 0.5, primary_color, 2)
return temp_vision_frame
def get_reference_frame(source_face : Face, target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame:
pass
def process_frame(inputs : FaceDebuggerInputs) -> VisionFrame:
reference_faces = inputs.get('reference_faces')
target_vision_frame = inputs.get('target_vision_frame')
many_faces = sort_and_filter_faces(get_many_faces([ target_vision_frame ]))
if state_manager.get_item('face_selector_mode') == 'many':
if many_faces:
for target_face in many_faces:
target_vision_frame = debug_face(target_face, target_vision_frame)
if state_manager.get_item('face_selector_mode') == 'one':
target_face = get_one_face(many_faces)
if target_face:
target_vision_frame = debug_face(target_face, target_vision_frame)
if state_manager.get_item('face_selector_mode') == 'reference':
similar_faces = find_similar_faces(many_faces, reference_faces, state_manager.get_item('reference_face_distance'))
if similar_faces:
for similar_face in similar_faces:
target_vision_frame = debug_face(similar_face, target_vision_frame)
return target_vision_frame
def process_frames(source_paths : List[str], queue_payloads : List[QueuePayload], update_progress : UpdateProgress) -> None:
reference_faces = get_reference_faces() if 'reference' in state_manager.get_item('face_selector_mode') else None
for queue_payload in process_manager.manage(queue_payloads):
target_vision_path = queue_payload['frame_path']
target_vision_frame = read_image(target_vision_path)
output_vision_frame = process_frame(
{
'reference_faces': reference_faces,
'target_vision_frame': target_vision_frame
})
write_image(target_vision_path, output_vision_frame)
update_progress(1)
def process_image(source_paths : List[str], target_path : str, output_path : str) -> None:
reference_faces = get_reference_faces() if 'reference' in state_manager.get_item('face_selector_mode') else None
target_vision_frame = read_static_image(target_path)
output_vision_frame = process_frame(
{
'reference_faces': reference_faces,
'target_vision_frame': target_vision_frame
})
write_image(output_path, output_vision_frame)
def process_video(source_paths : List[str], temp_frame_paths : List[str]) -> None:
processors.multi_process_frames(source_paths, temp_frame_paths, process_frames)
|