File size: 24,501 Bytes
a1da63c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
from argparse import ArgumentParser
from typing import List, Tuple

import numpy

import facefusion.jobs.job_manager
import facefusion.jobs.job_store
import facefusion.processors.core as processors
from facefusion import config, content_analyser, face_classifier, face_detector, face_landmarker, face_masker, face_recognizer, inference_manager, logger, process_manager, state_manager, wording
from facefusion.common_helper import get_first
from facefusion.download import conditional_download_hashes, conditional_download_sources
from facefusion.execution import has_execution_provider
from facefusion.face_analyser import get_average_face, get_many_faces, get_one_face
from facefusion.face_helper import paste_back, warp_face_by_face_landmark_5
from facefusion.face_masker import create_occlusion_mask, create_region_mask, create_static_box_mask
from facefusion.face_selector import find_similar_faces, sort_and_filter_faces
from facefusion.face_store import get_reference_faces
from facefusion.filesystem import filter_image_paths, has_image, in_directory, is_image, is_video, resolve_relative_path, same_file_extension
from facefusion.inference_manager import get_static_model_initializer
from facefusion.processors import choices as processors_choices
from facefusion.processors.pixel_boost import explode_pixel_boost, implode_pixel_boost
from facefusion.processors.typing import FaceSwapperInputs
from facefusion.program_helper import find_argument_group, suggest_face_swapper_pixel_boost_choices
from facefusion.thread_helper import conditional_thread_semaphore
from facefusion.typing import Args, Embedding, Face, FaceLandmark5, InferencePool, ModelOptions, ModelSet, ProcessMode, QueuePayload, UpdateProgress, VisionFrame
from facefusion.vision import read_image, read_static_image, read_static_images, unpack_resolution, write_image

MODEL_SET : ModelSet =\
{
	'blendswap_256':
	{
		'hashes':
		{
			'face_swapper':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/blendswap_256.hash',
				'path': resolve_relative_path('../.assets/models/blendswap_256.hash')
			},
			'face_recognizer':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/arcface_w600k_r50.hash',
				'path': resolve_relative_path('../.assets/models/arcface_w600k_r50.hash')
			}
		},
		'sources':
		{
			'face_swapper':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/blendswap_256.onnx',
				'path': resolve_relative_path('../.assets/models/blendswap_256.onnx')
			},
			'face_recognizer':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/arcface_w600k_r50.onnx',
				'path': resolve_relative_path('../.assets/models/arcface_w600k_r50.onnx')
			}
		},
		'type': 'blendswap',
		'template': 'ffhq_512',
		'size': (256, 256),
		'mean': [ 0.0, 0.0, 0.0 ],
		'standard_deviation': [ 1.0, 1.0, 1.0 ]
	},
	'ghost_256_unet_1':
	{
		'hashes':
		{
			'face_swapper':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/ghost_256_unet_1.hash',
				'path': resolve_relative_path('../.assets/models/ghost_256_unet_1.hash')
			},
			'face_recognizer':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/arcface_ghost.hash',
				'path': resolve_relative_path('../.assets/models/arcface_ghost.hash')
			}
		},
		'sources':
		{
			'face_swapper':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/ghost_256_unet_1.onnx',
				'path': resolve_relative_path('../.assets/models/ghost_256_unet_1.onnx')
			},
			'face_recognizer':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/arcface_ghost.onnx',
				'path': resolve_relative_path('../.assets/models/arcface_ghost.onnx')
			}
		},
		'type': 'ghost',
		'template': 'arcface_112_v1',
		'size': (256, 256),
		'mean': [ 0.0, 0.0, 0.0 ],
		'standard_deviation': [ 1.0, 1.0, 1.0 ]
	},
	'ghost_256_unet_2':
	{
		'hashes':
		{
			'face_swapper':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/ghost_256_unet_2.hash',
				'path': resolve_relative_path('../.assets/models/ghost_256_unet_2.hash')
			},
			'face_recognizer':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/arcface_ghost.hash',
				'path': resolve_relative_path('../.assets/models/arcface_ghost.hash')
			}
		},
		'sources':
		{
			'face_swapper':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/ghost_256_unet_2.onnx',
				'path': resolve_relative_path('../.assets/models/ghost_256_unet_2.onnx')
			},
			'face_recognizer':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/arcface_ghost.onnx',
				'path': resolve_relative_path('../.assets/models/arcface_ghost.onnx')
			}
		},
		'type': 'ghost',
		'template': 'arcface_112_v1',
		'size': (256, 256),
		'mean': [ 0.0, 0.0, 0.0 ],
		'standard_deviation': [ 1.0, 1.0, 1.0 ]
	},
	'ghost_256_unet_3':
	{
		'hashes':
		{
			'face_swapper':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/ghost_256_unet_3.hash',
				'path': resolve_relative_path('../.assets/models/ghost_256_unet_3.hash')
			},
			'face_recognizer':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/arcface_ghost.hash',
				'path': resolve_relative_path('../.assets/models/arcface_ghost.hash')
			}
		},
		'sources':
		{
			'face_swapper':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/ghost_256_unet_3.onnx',
				'path': resolve_relative_path('../.assets/models/ghost_256_unet_3.onnx')
			},
			'face_recognizer':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/arcface_ghost.onnx',
				'path': resolve_relative_path('../.assets/models/arcface_ghost.onnx')
			}
		},
		'type': 'ghost',
		'template': 'arcface_112_v1',
		'size': (256, 256),
		'mean': [ 0.0, 0.0, 0.0 ],
		'standard_deviation': [ 1.0, 1.0, 1.0 ]
	},
	'inswapper_128':
	{
		'hashes':
		{
			'face_swapper':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/inswapper_128.hash',
				'path': resolve_relative_path('../.assets/models/inswapper_128.hash')
			},
			'face_recognizer':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0//arcface_w600k_r50.hash',
				'path': resolve_relative_path('../.assets/models/arcface_w600k_r50.hash')
			}
		},
		'sources':
		{
			'face_swapper':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/inswapper_128.onnx',
				'path': resolve_relative_path('../.assets/models/inswapper_128.onnx')
			},
			'face_recognizer':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/arcface_w600k_r50.onnx',
				'path': resolve_relative_path('../.assets/models/arcface_w600k_r50.onnx')
			}
		},
		'type': 'inswapper',
		'template': 'arcface_128_v2',
		'size': (128, 128),
		'mean': [ 0.0, 0.0, 0.0 ],
		'standard_deviation': [ 1.0, 1.0, 1.0 ]
	},
	'inswapper_128_fp16':
	{
		'hashes':
		{
			'face_swapper':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/inswapper_128_fp16.hash',
				'path': resolve_relative_path('../.assets/models/inswapper_128_fp16.hash')
			},
			'face_recognizer':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/arcface_w600k_r50.hash',
				'path': resolve_relative_path('../.assets/models/arcface_w600k_r50.hash')
			}
		},
		'sources':
		{
			'face_swapper':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/inswapper_128_fp16.onnx',
				'path': resolve_relative_path('../.assets/models/inswapper_128_fp16.onnx')
			},
			'face_recognizer':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/arcface_w600k_r50.onnx',
				'path': resolve_relative_path('../.assets/models/arcface_w600k_r50.onnx')
			}
		},
		'type': 'inswapper',
		'template': 'arcface_128_v2',
		'size': (128, 128),
		'mean': [ 0.0, 0.0, 0.0 ],
		'standard_deviation': [ 1.0, 1.0, 1.0 ]
	},
	'simswap_256':
	{
		'hashes':
		{
			'face_swapper':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/simswap_256.hash',
				'path': resolve_relative_path('../.assets/models/simswap_256.hash')
			},
			'face_recognizer':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/arcface_simswap.hash',
				'path': resolve_relative_path('../.assets/models/arcface_simswap.hash')
			}
		},
		'sources':
		{
			'face_swapper':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/simswap_256.onnx',
				'path': resolve_relative_path('../.assets/models/simswap_256.onnx')
			},
			'face_recognizer':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/arcface_simswap.onnx',
				'path': resolve_relative_path('../.assets/models/arcface_simswap.onnx')
			}
		},
		'type': 'simswap',
		'template': 'arcface_112_v1',
		'size': (256, 256),
		'mean': [ 0.485, 0.456, 0.406 ],
		'standard_deviation': [ 0.229, 0.224, 0.225 ]
	},
	'simswap_512_unofficial':
	{
		'hashes':
		{
			'face_swapper':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/simswap_512_unofficial.hash',
				'path': resolve_relative_path('../.assets/models/simswap_512_unofficial.hash')
			},
			'face_recognizer':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/arcface_simswap.hash',
				'path': resolve_relative_path('../.assets/models/arcface_simswap.hash')
			}
		},
		'sources':
		{
			'face_swapper':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/simswap_512_unofficial.onnx',
				'path': resolve_relative_path('../.assets/models/simswap_512_unofficial.onnx')
			},
			'face_recognizer':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/arcface_simswap.onnx',
				'path': resolve_relative_path('../.assets/models/arcface_simswap.onnx')
			}
		},
		'type': 'simswap',
		'template': 'arcface_112_v1',
		'size': (512, 512),
		'mean': [ 0.0, 0.0, 0.0 ],
		'standard_deviation': [ 1.0, 1.0, 1.0 ]
	},
	'uniface_256':
	{
		'hashes':
		{
			'face_swapper':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/uniface_256.hash',
				'path': resolve_relative_path('../.assets/models/uniface_256.hash')
			},
			'face_recognizer':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/arcface_w600k_r50.hash',
				'path': resolve_relative_path('../.assets/models/arcface_w600k_r50.hash')
			}
		},
		'sources':
		{
			'face_swapper':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/uniface_256.onnx',
				'path': resolve_relative_path('../.assets/models/uniface_256.onnx')
			},
			'face_recognizer':
			{
				'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/arcface_w600k_r50.onnx',
				'path': resolve_relative_path('../.assets/models/arcface_w600k_r50.onnx')
			}
		},
		'type': 'uniface',
		'template': 'ffhq_512',
		'size': (256, 256),
		'mean': [ 0.0, 0.0, 0.0 ],
		'standard_deviation': [ 1.0, 1.0, 1.0 ]
	}
}


def get_inference_pool() -> InferencePool:
	model_sources = get_model_options().get('sources')
	return inference_manager.get_inference_pool(__name__, model_sources)


def clear_inference_pool() -> None:
	inference_manager.clear_inference_pool(__name__)


def get_model_options() -> ModelOptions:
	face_swapper_model = 'inswapper_128' if has_execution_provider('coreml') and state_manager.get_item('face_swapper_model') == 'inswapper_128_fp16' else state_manager.get_item('face_swapper_model')
	return MODEL_SET[face_swapper_model]


def register_args(program : ArgumentParser) -> None:
	group_processors = find_argument_group(program, 'processors')
	if group_processors:
		group_processors.add_argument('--face-swapper-model', help = wording.get('help.face_swapper_model'), default = config.get_str_value('processors.face_swapper_model', 'inswapper_128_fp16'), choices = processors_choices.face_swapper_set.keys())
		face_swapper_pixel_boost_choices = suggest_face_swapper_pixel_boost_choices(program)
		group_processors.add_argument('--face-swapper-pixel-boost', help = wording.get('help.face_swapper_pixel_boost'), default = config.get_str_value('processors.face_swapper_pixel_boost', get_first(face_swapper_pixel_boost_choices)), choices = face_swapper_pixel_boost_choices)
		facefusion.jobs.job_store.register_step_keys([ 'face_swapper_model', 'face_swapper_pixel_boost' ])


def apply_args(args : Args) -> None:
	state_manager.init_item('face_swapper_model', args.get('face_swapper_model'))
	state_manager.init_item('face_swapper_pixel_boost', args.get('face_swapper_pixel_boost'))


def pre_check() -> bool:
	download_directory_path = resolve_relative_path('../.assets/models')
	model_hashes = get_model_options().get('hashes')
	model_sources = get_model_options().get('sources')

	return conditional_download_hashes(download_directory_path, model_hashes) and conditional_download_sources(download_directory_path, model_sources)


def pre_process(mode : ProcessMode) -> bool:
	if not has_image(state_manager.get_item('source_paths')):
		logger.error(wording.get('choose_image_source') + wording.get('exclamation_mark'), __name__.upper())
		return False
	source_image_paths = filter_image_paths(state_manager.get_item('source_paths'))
	source_frames = read_static_images(source_image_paths)
	source_faces = get_many_faces(source_frames)
	if not get_one_face(source_faces):
		logger.error(wording.get('no_source_face_detected') + wording.get('exclamation_mark'), __name__.upper())
		return False
	if mode in [ 'output', 'preview' ] and not is_image(state_manager.get_item('target_path')) and not is_video(state_manager.get_item('target_path')):
		logger.error(wording.get('choose_image_or_video_target') + wording.get('exclamation_mark'), __name__.upper())
		return False
	if mode == 'output' and not in_directory(state_manager.get_item('output_path')):
		logger.error(wording.get('specify_image_or_video_output') + wording.get('exclamation_mark'), __name__.upper())
		return False
	if mode == 'output' and not same_file_extension([ state_manager.get_item('target_path'), state_manager.get_item('output_path') ]):
		logger.error(wording.get('match_target_and_output_extension') + wording.get('exclamation_mark'), __name__.upper())
		return False
	return True


def post_process() -> None:
	read_static_image.cache_clear()
	get_static_model_initializer.cache_clear()
	if state_manager.get_item('video_memory_strategy') in [ 'strict', 'moderate' ]:
		clear_inference_pool()
	if state_manager.get_item('video_memory_strategy') == 'strict':
		content_analyser.clear_inference_pool()
		face_classifier.clear_inference_pool()
		face_detector.clear_inference_pool()
		face_landmarker.clear_inference_pool()
		face_masker.clear_inference_pool()
		face_recognizer.clear_inference_pool()


def swap_face(source_face : Face, target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame:
	model_template = get_model_options().get('template')
	model_size = get_model_options().get('size')
	pixel_boost_size = unpack_resolution(state_manager.get_item('face_swapper_pixel_boost'))
	pixel_boost_total = pixel_boost_size[0] // model_size[0]
	crop_vision_frame, affine_matrix = warp_face_by_face_landmark_5(temp_vision_frame, target_face.landmark_set.get('5/68'), model_template, pixel_boost_size)
	crop_masks = []
	temp_vision_frames = []

	if 'box' in state_manager.get_item('face_mask_types'):
		box_mask = create_static_box_mask(crop_vision_frame.shape[:2][::-1], state_manager.get_item('face_mask_blur'), state_manager.get_item('face_mask_padding'))
		crop_masks.append(box_mask)

	if 'occlusion' in state_manager.get_item('face_mask_types'):
		occlusion_mask = create_occlusion_mask(crop_vision_frame)
		crop_masks.append(occlusion_mask)

	pixel_boost_vision_frames = implode_pixel_boost(crop_vision_frame, pixel_boost_total, model_size)
	for pixel_boost_vision_frame in pixel_boost_vision_frames:
		pixel_boost_vision_frame = prepare_crop_frame(pixel_boost_vision_frame)
		pixel_boost_vision_frame = apply_swap(source_face, pixel_boost_vision_frame)
		pixel_boost_vision_frame = normalize_crop_frame(pixel_boost_vision_frame)
		temp_vision_frames.append(pixel_boost_vision_frame)
	crop_vision_frame = explode_pixel_boost(temp_vision_frames, pixel_boost_total, model_size, pixel_boost_size)

	if 'region' in state_manager.get_item('face_mask_types'):
		region_mask = create_region_mask(crop_vision_frame, state_manager.get_item('face_mask_regions'))
		crop_masks.append(region_mask)
	crop_mask = numpy.minimum.reduce(crop_masks).clip(0, 1)
	temp_vision_frame = paste_back(temp_vision_frame, crop_vision_frame, crop_mask, affine_matrix)
	return temp_vision_frame


def apply_swap(source_face : Face, crop_vision_frame : VisionFrame) -> VisionFrame:
	face_swapper = get_inference_pool().get('face_swapper')
	model_type = get_model_options().get('type')
	face_swapper_inputs = {}

	for face_swapper_input in face_swapper.get_inputs():
		if face_swapper_input.name == 'source':
			if model_type == 'blendswap' or model_type == 'uniface':
				face_swapper_inputs[face_swapper_input.name] = prepare_source_frame(source_face)
			else:
				face_swapper_inputs[face_swapper_input.name] = prepare_source_embedding(source_face)
		if face_swapper_input.name == 'target':
			face_swapper_inputs[face_swapper_input.name] = crop_vision_frame

	with conditional_thread_semaphore():
		crop_vision_frame = face_swapper.run(None, face_swapper_inputs)[0][0]

	return crop_vision_frame


def prepare_source_frame(source_face : Face) -> VisionFrame:
	model_type = get_model_options().get('type')
	source_vision_frame = read_static_image(get_first(state_manager.get_item('source_paths')))

	if model_type == 'blendswap':
		source_vision_frame, _ = warp_face_by_face_landmark_5(source_vision_frame, source_face.landmark_set.get('5/68'), 'arcface_112_v2', (112, 112))
	if model_type == 'uniface':
		source_vision_frame, _ = warp_face_by_face_landmark_5(source_vision_frame, source_face.landmark_set.get('5/68'), 'ffhq_512', (256, 256))
	source_vision_frame = source_vision_frame[:, :, ::-1] / 255.0
	source_vision_frame = source_vision_frame.transpose(2, 0, 1)
	source_vision_frame = numpy.expand_dims(source_vision_frame, axis = 0).astype(numpy.float32)
	return source_vision_frame


def prepare_source_embedding(source_face : Face) -> Embedding:
	model_type = get_model_options().get('type')
	source_vision_frame = read_static_image(get_first(state_manager.get_item('source_paths')))
	source_embedding, source_normed_embedding = calc_embedding(source_vision_frame, source_face.landmark_set.get('5/68'))

	if model_type == 'ghost':
		source_embedding = source_embedding.reshape(1, -1)
	elif model_type == 'inswapper':
		model_path = get_model_options().get('sources').get('face_swapper').get('path')
		model_initializer = get_static_model_initializer(model_path)
		source_embedding = source_embedding.reshape((1, -1))
		source_embedding = numpy.dot(source_embedding, model_initializer) / numpy.linalg.norm(source_embedding)
	else:
		source_embedding = source_normed_embedding.reshape(1, -1)
	return source_embedding


def calc_embedding(temp_vision_frame : VisionFrame, face_landmark_5 : FaceLandmark5) -> Tuple[Embedding, Embedding]:
	face_recognizer = get_inference_pool().get('face_recognizer')
	crop_vision_frame, matrix = warp_face_by_face_landmark_5(temp_vision_frame, face_landmark_5, 'arcface_112_v2', (112, 112))
	crop_vision_frame = crop_vision_frame / 127.5 - 1
	crop_vision_frame = crop_vision_frame[:, :, ::-1].transpose(2, 0, 1).astype(numpy.float32)
	crop_vision_frame = numpy.expand_dims(crop_vision_frame, axis = 0)

	with conditional_thread_semaphore():
		embedding = face_recognizer.run(None,
		{
			'input': crop_vision_frame
		})[0]

	embedding = embedding.ravel()
	normed_embedding = embedding / numpy.linalg.norm(embedding)
	return embedding, normed_embedding


def prepare_crop_frame(crop_vision_frame : VisionFrame) -> VisionFrame:
	model_type = get_model_options().get('type')
	model_mean = get_model_options().get('mean')
	model_standard_deviation = get_model_options().get('standard_deviation')

	if model_type == 'ghost':
		crop_vision_frame = crop_vision_frame[:, :, ::-1] / 127.5 - 1
	else:
		crop_vision_frame = crop_vision_frame[:, :, ::-1] / 255.0
	crop_vision_frame = (crop_vision_frame - model_mean) / model_standard_deviation
	crop_vision_frame = crop_vision_frame.transpose(2, 0, 1)
	crop_vision_frame = numpy.expand_dims(crop_vision_frame, axis = 0).astype(numpy.float32)
	return crop_vision_frame


def normalize_crop_frame(crop_vision_frame : VisionFrame) -> VisionFrame:
	model_template = get_model_options().get('type')
	crop_vision_frame = crop_vision_frame.transpose(1, 2, 0)

	if model_template == 'ghost':
		crop_vision_frame = (crop_vision_frame * 127.5 + 127.5).round()
	else:
		crop_vision_frame = (crop_vision_frame * 255.0).round()
	crop_vision_frame = crop_vision_frame[:, :, ::-1]
	return crop_vision_frame


def get_reference_frame(source_face : Face, target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame:
	return swap_face(source_face, target_face, temp_vision_frame)


def process_frame(inputs : FaceSwapperInputs) -> VisionFrame:
	reference_faces = inputs.get('reference_faces')
	source_face = inputs.get('source_face')
	target_vision_frame = inputs.get('target_vision_frame')
	many_faces = sort_and_filter_faces(get_many_faces([ target_vision_frame ]))

	if state_manager.get_item('face_selector_mode') == 'many':
		if many_faces:
			for target_face in many_faces:
				target_vision_frame = swap_face(source_face, target_face, target_vision_frame)
	if state_manager.get_item('face_selector_mode') == 'one':
		target_face = get_one_face(many_faces)
		if target_face:
			target_vision_frame = swap_face(source_face, target_face, target_vision_frame)
	if state_manager.get_item('face_selector_mode') == 'reference':
		similar_faces = find_similar_faces(many_faces, reference_faces, state_manager.get_item('reference_face_distance'))
		if similar_faces:
			for similar_face in similar_faces:
				target_vision_frame = swap_face(source_face, similar_face, target_vision_frame)
	return target_vision_frame


def process_frames(source_paths : List[str], queue_payloads : List[QueuePayload], update_progress : UpdateProgress) -> None:
	reference_faces = get_reference_faces() if 'reference' in state_manager.get_item('face_selector_mode') else None
	source_frames = read_static_images(source_paths)
	source_faces = get_many_faces(source_frames)
	source_face = get_average_face(source_faces)

	for queue_payload in process_manager.manage(queue_payloads):
		target_vision_path = queue_payload['frame_path']
		target_vision_frame = read_image(target_vision_path)
		output_vision_frame = process_frame(
		{
			'reference_faces': reference_faces,
			'source_face': source_face,
			'target_vision_frame': target_vision_frame
		})
		write_image(target_vision_path, output_vision_frame)
		update_progress(1)


def process_image(source_paths : List[str], target_path : str, output_path : str) -> None:
	reference_faces = get_reference_faces() if 'reference' in state_manager.get_item('face_selector_mode') else None
	source_frames = read_static_images(source_paths)
	source_faces = get_many_faces(source_frames)
	source_face = get_average_face(source_faces)
	target_vision_frame = read_static_image(target_path)
	output_vision_frame = process_frame(
	{
		'reference_faces': reference_faces,
		'source_face': source_face,
		'target_vision_frame': target_vision_frame
	})
	write_image(output_path, output_vision_frame)


def process_video(source_paths : List[str], temp_frame_paths : List[str]) -> None:
	processors.multi_process_frames(source_paths, temp_frame_paths, process_frames)