Spaces:
Build error
Build error
File size: 24,501 Bytes
a1da63c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 |
from argparse import ArgumentParser
from typing import List, Tuple
import numpy
import facefusion.jobs.job_manager
import facefusion.jobs.job_store
import facefusion.processors.core as processors
from facefusion import config, content_analyser, face_classifier, face_detector, face_landmarker, face_masker, face_recognizer, inference_manager, logger, process_manager, state_manager, wording
from facefusion.common_helper import get_first
from facefusion.download import conditional_download_hashes, conditional_download_sources
from facefusion.execution import has_execution_provider
from facefusion.face_analyser import get_average_face, get_many_faces, get_one_face
from facefusion.face_helper import paste_back, warp_face_by_face_landmark_5
from facefusion.face_masker import create_occlusion_mask, create_region_mask, create_static_box_mask
from facefusion.face_selector import find_similar_faces, sort_and_filter_faces
from facefusion.face_store import get_reference_faces
from facefusion.filesystem import filter_image_paths, has_image, in_directory, is_image, is_video, resolve_relative_path, same_file_extension
from facefusion.inference_manager import get_static_model_initializer
from facefusion.processors import choices as processors_choices
from facefusion.processors.pixel_boost import explode_pixel_boost, implode_pixel_boost
from facefusion.processors.typing import FaceSwapperInputs
from facefusion.program_helper import find_argument_group, suggest_face_swapper_pixel_boost_choices
from facefusion.thread_helper import conditional_thread_semaphore
from facefusion.typing import Args, Embedding, Face, FaceLandmark5, InferencePool, ModelOptions, ModelSet, ProcessMode, QueuePayload, UpdateProgress, VisionFrame
from facefusion.vision import read_image, read_static_image, read_static_images, unpack_resolution, write_image
MODEL_SET : ModelSet =\
{
'blendswap_256':
{
'hashes':
{
'face_swapper':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/blendswap_256.hash',
'path': resolve_relative_path('../.assets/models/blendswap_256.hash')
},
'face_recognizer':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/arcface_w600k_r50.hash',
'path': resolve_relative_path('../.assets/models/arcface_w600k_r50.hash')
}
},
'sources':
{
'face_swapper':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/blendswap_256.onnx',
'path': resolve_relative_path('../.assets/models/blendswap_256.onnx')
},
'face_recognizer':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/arcface_w600k_r50.onnx',
'path': resolve_relative_path('../.assets/models/arcface_w600k_r50.onnx')
}
},
'type': 'blendswap',
'template': 'ffhq_512',
'size': (256, 256),
'mean': [ 0.0, 0.0, 0.0 ],
'standard_deviation': [ 1.0, 1.0, 1.0 ]
},
'ghost_256_unet_1':
{
'hashes':
{
'face_swapper':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/ghost_256_unet_1.hash',
'path': resolve_relative_path('../.assets/models/ghost_256_unet_1.hash')
},
'face_recognizer':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/arcface_ghost.hash',
'path': resolve_relative_path('../.assets/models/arcface_ghost.hash')
}
},
'sources':
{
'face_swapper':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/ghost_256_unet_1.onnx',
'path': resolve_relative_path('../.assets/models/ghost_256_unet_1.onnx')
},
'face_recognizer':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/arcface_ghost.onnx',
'path': resolve_relative_path('../.assets/models/arcface_ghost.onnx')
}
},
'type': 'ghost',
'template': 'arcface_112_v1',
'size': (256, 256),
'mean': [ 0.0, 0.0, 0.0 ],
'standard_deviation': [ 1.0, 1.0, 1.0 ]
},
'ghost_256_unet_2':
{
'hashes':
{
'face_swapper':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/ghost_256_unet_2.hash',
'path': resolve_relative_path('../.assets/models/ghost_256_unet_2.hash')
},
'face_recognizer':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/arcface_ghost.hash',
'path': resolve_relative_path('../.assets/models/arcface_ghost.hash')
}
},
'sources':
{
'face_swapper':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/ghost_256_unet_2.onnx',
'path': resolve_relative_path('../.assets/models/ghost_256_unet_2.onnx')
},
'face_recognizer':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/arcface_ghost.onnx',
'path': resolve_relative_path('../.assets/models/arcface_ghost.onnx')
}
},
'type': 'ghost',
'template': 'arcface_112_v1',
'size': (256, 256),
'mean': [ 0.0, 0.0, 0.0 ],
'standard_deviation': [ 1.0, 1.0, 1.0 ]
},
'ghost_256_unet_3':
{
'hashes':
{
'face_swapper':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/ghost_256_unet_3.hash',
'path': resolve_relative_path('../.assets/models/ghost_256_unet_3.hash')
},
'face_recognizer':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/arcface_ghost.hash',
'path': resolve_relative_path('../.assets/models/arcface_ghost.hash')
}
},
'sources':
{
'face_swapper':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/ghost_256_unet_3.onnx',
'path': resolve_relative_path('../.assets/models/ghost_256_unet_3.onnx')
},
'face_recognizer':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/arcface_ghost.onnx',
'path': resolve_relative_path('../.assets/models/arcface_ghost.onnx')
}
},
'type': 'ghost',
'template': 'arcface_112_v1',
'size': (256, 256),
'mean': [ 0.0, 0.0, 0.0 ],
'standard_deviation': [ 1.0, 1.0, 1.0 ]
},
'inswapper_128':
{
'hashes':
{
'face_swapper':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/inswapper_128.hash',
'path': resolve_relative_path('../.assets/models/inswapper_128.hash')
},
'face_recognizer':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0//arcface_w600k_r50.hash',
'path': resolve_relative_path('../.assets/models/arcface_w600k_r50.hash')
}
},
'sources':
{
'face_swapper':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/inswapper_128.onnx',
'path': resolve_relative_path('../.assets/models/inswapper_128.onnx')
},
'face_recognizer':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/arcface_w600k_r50.onnx',
'path': resolve_relative_path('../.assets/models/arcface_w600k_r50.onnx')
}
},
'type': 'inswapper',
'template': 'arcface_128_v2',
'size': (128, 128),
'mean': [ 0.0, 0.0, 0.0 ],
'standard_deviation': [ 1.0, 1.0, 1.0 ]
},
'inswapper_128_fp16':
{
'hashes':
{
'face_swapper':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/inswapper_128_fp16.hash',
'path': resolve_relative_path('../.assets/models/inswapper_128_fp16.hash')
},
'face_recognizer':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/arcface_w600k_r50.hash',
'path': resolve_relative_path('../.assets/models/arcface_w600k_r50.hash')
}
},
'sources':
{
'face_swapper':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/inswapper_128_fp16.onnx',
'path': resolve_relative_path('../.assets/models/inswapper_128_fp16.onnx')
},
'face_recognizer':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/arcface_w600k_r50.onnx',
'path': resolve_relative_path('../.assets/models/arcface_w600k_r50.onnx')
}
},
'type': 'inswapper',
'template': 'arcface_128_v2',
'size': (128, 128),
'mean': [ 0.0, 0.0, 0.0 ],
'standard_deviation': [ 1.0, 1.0, 1.0 ]
},
'simswap_256':
{
'hashes':
{
'face_swapper':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/simswap_256.hash',
'path': resolve_relative_path('../.assets/models/simswap_256.hash')
},
'face_recognizer':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/arcface_simswap.hash',
'path': resolve_relative_path('../.assets/models/arcface_simswap.hash')
}
},
'sources':
{
'face_swapper':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/simswap_256.onnx',
'path': resolve_relative_path('../.assets/models/simswap_256.onnx')
},
'face_recognizer':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/arcface_simswap.onnx',
'path': resolve_relative_path('../.assets/models/arcface_simswap.onnx')
}
},
'type': 'simswap',
'template': 'arcface_112_v1',
'size': (256, 256),
'mean': [ 0.485, 0.456, 0.406 ],
'standard_deviation': [ 0.229, 0.224, 0.225 ]
},
'simswap_512_unofficial':
{
'hashes':
{
'face_swapper':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/simswap_512_unofficial.hash',
'path': resolve_relative_path('../.assets/models/simswap_512_unofficial.hash')
},
'face_recognizer':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/arcface_simswap.hash',
'path': resolve_relative_path('../.assets/models/arcface_simswap.hash')
}
},
'sources':
{
'face_swapper':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/simswap_512_unofficial.onnx',
'path': resolve_relative_path('../.assets/models/simswap_512_unofficial.onnx')
},
'face_recognizer':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/arcface_simswap.onnx',
'path': resolve_relative_path('../.assets/models/arcface_simswap.onnx')
}
},
'type': 'simswap',
'template': 'arcface_112_v1',
'size': (512, 512),
'mean': [ 0.0, 0.0, 0.0 ],
'standard_deviation': [ 1.0, 1.0, 1.0 ]
},
'uniface_256':
{
'hashes':
{
'face_swapper':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/uniface_256.hash',
'path': resolve_relative_path('../.assets/models/uniface_256.hash')
},
'face_recognizer':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/arcface_w600k_r50.hash',
'path': resolve_relative_path('../.assets/models/arcface_w600k_r50.hash')
}
},
'sources':
{
'face_swapper':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/uniface_256.onnx',
'path': resolve_relative_path('../.assets/models/uniface_256.onnx')
},
'face_recognizer':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/arcface_w600k_r50.onnx',
'path': resolve_relative_path('../.assets/models/arcface_w600k_r50.onnx')
}
},
'type': 'uniface',
'template': 'ffhq_512',
'size': (256, 256),
'mean': [ 0.0, 0.0, 0.0 ],
'standard_deviation': [ 1.0, 1.0, 1.0 ]
}
}
def get_inference_pool() -> InferencePool:
model_sources = get_model_options().get('sources')
return inference_manager.get_inference_pool(__name__, model_sources)
def clear_inference_pool() -> None:
inference_manager.clear_inference_pool(__name__)
def get_model_options() -> ModelOptions:
face_swapper_model = 'inswapper_128' if has_execution_provider('coreml') and state_manager.get_item('face_swapper_model') == 'inswapper_128_fp16' else state_manager.get_item('face_swapper_model')
return MODEL_SET[face_swapper_model]
def register_args(program : ArgumentParser) -> None:
group_processors = find_argument_group(program, 'processors')
if group_processors:
group_processors.add_argument('--face-swapper-model', help = wording.get('help.face_swapper_model'), default = config.get_str_value('processors.face_swapper_model', 'inswapper_128_fp16'), choices = processors_choices.face_swapper_set.keys())
face_swapper_pixel_boost_choices = suggest_face_swapper_pixel_boost_choices(program)
group_processors.add_argument('--face-swapper-pixel-boost', help = wording.get('help.face_swapper_pixel_boost'), default = config.get_str_value('processors.face_swapper_pixel_boost', get_first(face_swapper_pixel_boost_choices)), choices = face_swapper_pixel_boost_choices)
facefusion.jobs.job_store.register_step_keys([ 'face_swapper_model', 'face_swapper_pixel_boost' ])
def apply_args(args : Args) -> None:
state_manager.init_item('face_swapper_model', args.get('face_swapper_model'))
state_manager.init_item('face_swapper_pixel_boost', args.get('face_swapper_pixel_boost'))
def pre_check() -> bool:
download_directory_path = resolve_relative_path('../.assets/models')
model_hashes = get_model_options().get('hashes')
model_sources = get_model_options().get('sources')
return conditional_download_hashes(download_directory_path, model_hashes) and conditional_download_sources(download_directory_path, model_sources)
def pre_process(mode : ProcessMode) -> bool:
if not has_image(state_manager.get_item('source_paths')):
logger.error(wording.get('choose_image_source') + wording.get('exclamation_mark'), __name__.upper())
return False
source_image_paths = filter_image_paths(state_manager.get_item('source_paths'))
source_frames = read_static_images(source_image_paths)
source_faces = get_many_faces(source_frames)
if not get_one_face(source_faces):
logger.error(wording.get('no_source_face_detected') + wording.get('exclamation_mark'), __name__.upper())
return False
if mode in [ 'output', 'preview' ] and not is_image(state_manager.get_item('target_path')) and not is_video(state_manager.get_item('target_path')):
logger.error(wording.get('choose_image_or_video_target') + wording.get('exclamation_mark'), __name__.upper())
return False
if mode == 'output' and not in_directory(state_manager.get_item('output_path')):
logger.error(wording.get('specify_image_or_video_output') + wording.get('exclamation_mark'), __name__.upper())
return False
if mode == 'output' and not same_file_extension([ state_manager.get_item('target_path'), state_manager.get_item('output_path') ]):
logger.error(wording.get('match_target_and_output_extension') + wording.get('exclamation_mark'), __name__.upper())
return False
return True
def post_process() -> None:
read_static_image.cache_clear()
get_static_model_initializer.cache_clear()
if state_manager.get_item('video_memory_strategy') in [ 'strict', 'moderate' ]:
clear_inference_pool()
if state_manager.get_item('video_memory_strategy') == 'strict':
content_analyser.clear_inference_pool()
face_classifier.clear_inference_pool()
face_detector.clear_inference_pool()
face_landmarker.clear_inference_pool()
face_masker.clear_inference_pool()
face_recognizer.clear_inference_pool()
def swap_face(source_face : Face, target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame:
model_template = get_model_options().get('template')
model_size = get_model_options().get('size')
pixel_boost_size = unpack_resolution(state_manager.get_item('face_swapper_pixel_boost'))
pixel_boost_total = pixel_boost_size[0] // model_size[0]
crop_vision_frame, affine_matrix = warp_face_by_face_landmark_5(temp_vision_frame, target_face.landmark_set.get('5/68'), model_template, pixel_boost_size)
crop_masks = []
temp_vision_frames = []
if 'box' in state_manager.get_item('face_mask_types'):
box_mask = create_static_box_mask(crop_vision_frame.shape[:2][::-1], state_manager.get_item('face_mask_blur'), state_manager.get_item('face_mask_padding'))
crop_masks.append(box_mask)
if 'occlusion' in state_manager.get_item('face_mask_types'):
occlusion_mask = create_occlusion_mask(crop_vision_frame)
crop_masks.append(occlusion_mask)
pixel_boost_vision_frames = implode_pixel_boost(crop_vision_frame, pixel_boost_total, model_size)
for pixel_boost_vision_frame in pixel_boost_vision_frames:
pixel_boost_vision_frame = prepare_crop_frame(pixel_boost_vision_frame)
pixel_boost_vision_frame = apply_swap(source_face, pixel_boost_vision_frame)
pixel_boost_vision_frame = normalize_crop_frame(pixel_boost_vision_frame)
temp_vision_frames.append(pixel_boost_vision_frame)
crop_vision_frame = explode_pixel_boost(temp_vision_frames, pixel_boost_total, model_size, pixel_boost_size)
if 'region' in state_manager.get_item('face_mask_types'):
region_mask = create_region_mask(crop_vision_frame, state_manager.get_item('face_mask_regions'))
crop_masks.append(region_mask)
crop_mask = numpy.minimum.reduce(crop_masks).clip(0, 1)
temp_vision_frame = paste_back(temp_vision_frame, crop_vision_frame, crop_mask, affine_matrix)
return temp_vision_frame
def apply_swap(source_face : Face, crop_vision_frame : VisionFrame) -> VisionFrame:
face_swapper = get_inference_pool().get('face_swapper')
model_type = get_model_options().get('type')
face_swapper_inputs = {}
for face_swapper_input in face_swapper.get_inputs():
if face_swapper_input.name == 'source':
if model_type == 'blendswap' or model_type == 'uniface':
face_swapper_inputs[face_swapper_input.name] = prepare_source_frame(source_face)
else:
face_swapper_inputs[face_swapper_input.name] = prepare_source_embedding(source_face)
if face_swapper_input.name == 'target':
face_swapper_inputs[face_swapper_input.name] = crop_vision_frame
with conditional_thread_semaphore():
crop_vision_frame = face_swapper.run(None, face_swapper_inputs)[0][0]
return crop_vision_frame
def prepare_source_frame(source_face : Face) -> VisionFrame:
model_type = get_model_options().get('type')
source_vision_frame = read_static_image(get_first(state_manager.get_item('source_paths')))
if model_type == 'blendswap':
source_vision_frame, _ = warp_face_by_face_landmark_5(source_vision_frame, source_face.landmark_set.get('5/68'), 'arcface_112_v2', (112, 112))
if model_type == 'uniface':
source_vision_frame, _ = warp_face_by_face_landmark_5(source_vision_frame, source_face.landmark_set.get('5/68'), 'ffhq_512', (256, 256))
source_vision_frame = source_vision_frame[:, :, ::-1] / 255.0
source_vision_frame = source_vision_frame.transpose(2, 0, 1)
source_vision_frame = numpy.expand_dims(source_vision_frame, axis = 0).astype(numpy.float32)
return source_vision_frame
def prepare_source_embedding(source_face : Face) -> Embedding:
model_type = get_model_options().get('type')
source_vision_frame = read_static_image(get_first(state_manager.get_item('source_paths')))
source_embedding, source_normed_embedding = calc_embedding(source_vision_frame, source_face.landmark_set.get('5/68'))
if model_type == 'ghost':
source_embedding = source_embedding.reshape(1, -1)
elif model_type == 'inswapper':
model_path = get_model_options().get('sources').get('face_swapper').get('path')
model_initializer = get_static_model_initializer(model_path)
source_embedding = source_embedding.reshape((1, -1))
source_embedding = numpy.dot(source_embedding, model_initializer) / numpy.linalg.norm(source_embedding)
else:
source_embedding = source_normed_embedding.reshape(1, -1)
return source_embedding
def calc_embedding(temp_vision_frame : VisionFrame, face_landmark_5 : FaceLandmark5) -> Tuple[Embedding, Embedding]:
face_recognizer = get_inference_pool().get('face_recognizer')
crop_vision_frame, matrix = warp_face_by_face_landmark_5(temp_vision_frame, face_landmark_5, 'arcface_112_v2', (112, 112))
crop_vision_frame = crop_vision_frame / 127.5 - 1
crop_vision_frame = crop_vision_frame[:, :, ::-1].transpose(2, 0, 1).astype(numpy.float32)
crop_vision_frame = numpy.expand_dims(crop_vision_frame, axis = 0)
with conditional_thread_semaphore():
embedding = face_recognizer.run(None,
{
'input': crop_vision_frame
})[0]
embedding = embedding.ravel()
normed_embedding = embedding / numpy.linalg.norm(embedding)
return embedding, normed_embedding
def prepare_crop_frame(crop_vision_frame : VisionFrame) -> VisionFrame:
model_type = get_model_options().get('type')
model_mean = get_model_options().get('mean')
model_standard_deviation = get_model_options().get('standard_deviation')
if model_type == 'ghost':
crop_vision_frame = crop_vision_frame[:, :, ::-1] / 127.5 - 1
else:
crop_vision_frame = crop_vision_frame[:, :, ::-1] / 255.0
crop_vision_frame = (crop_vision_frame - model_mean) / model_standard_deviation
crop_vision_frame = crop_vision_frame.transpose(2, 0, 1)
crop_vision_frame = numpy.expand_dims(crop_vision_frame, axis = 0).astype(numpy.float32)
return crop_vision_frame
def normalize_crop_frame(crop_vision_frame : VisionFrame) -> VisionFrame:
model_template = get_model_options().get('type')
crop_vision_frame = crop_vision_frame.transpose(1, 2, 0)
if model_template == 'ghost':
crop_vision_frame = (crop_vision_frame * 127.5 + 127.5).round()
else:
crop_vision_frame = (crop_vision_frame * 255.0).round()
crop_vision_frame = crop_vision_frame[:, :, ::-1]
return crop_vision_frame
def get_reference_frame(source_face : Face, target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame:
return swap_face(source_face, target_face, temp_vision_frame)
def process_frame(inputs : FaceSwapperInputs) -> VisionFrame:
reference_faces = inputs.get('reference_faces')
source_face = inputs.get('source_face')
target_vision_frame = inputs.get('target_vision_frame')
many_faces = sort_and_filter_faces(get_many_faces([ target_vision_frame ]))
if state_manager.get_item('face_selector_mode') == 'many':
if many_faces:
for target_face in many_faces:
target_vision_frame = swap_face(source_face, target_face, target_vision_frame)
if state_manager.get_item('face_selector_mode') == 'one':
target_face = get_one_face(many_faces)
if target_face:
target_vision_frame = swap_face(source_face, target_face, target_vision_frame)
if state_manager.get_item('face_selector_mode') == 'reference':
similar_faces = find_similar_faces(many_faces, reference_faces, state_manager.get_item('reference_face_distance'))
if similar_faces:
for similar_face in similar_faces:
target_vision_frame = swap_face(source_face, similar_face, target_vision_frame)
return target_vision_frame
def process_frames(source_paths : List[str], queue_payloads : List[QueuePayload], update_progress : UpdateProgress) -> None:
reference_faces = get_reference_faces() if 'reference' in state_manager.get_item('face_selector_mode') else None
source_frames = read_static_images(source_paths)
source_faces = get_many_faces(source_frames)
source_face = get_average_face(source_faces)
for queue_payload in process_manager.manage(queue_payloads):
target_vision_path = queue_payload['frame_path']
target_vision_frame = read_image(target_vision_path)
output_vision_frame = process_frame(
{
'reference_faces': reference_faces,
'source_face': source_face,
'target_vision_frame': target_vision_frame
})
write_image(target_vision_path, output_vision_frame)
update_progress(1)
def process_image(source_paths : List[str], target_path : str, output_path : str) -> None:
reference_faces = get_reference_faces() if 'reference' in state_manager.get_item('face_selector_mode') else None
source_frames = read_static_images(source_paths)
source_faces = get_many_faces(source_frames)
source_face = get_average_face(source_faces)
target_vision_frame = read_static_image(target_path)
output_vision_frame = process_frame(
{
'reference_faces': reference_faces,
'source_face': source_face,
'target_vision_frame': target_vision_frame
})
write_image(output_path, output_vision_frame)
def process_video(source_paths : List[str], temp_frame_paths : List[str]) -> None:
processors.multi_process_frames(source_paths, temp_frame_paths, process_frames)
|