Spaces:
Build error
Build error
from typing import List, Optional | |
import numpy | |
from facefusion import state_manager | |
from facefusion.common_helper import get_first | |
from facefusion.face_classifier import detect_gender_age | |
from facefusion.face_detector import detect_faces, detect_rotated_faces | |
from facefusion.face_helper import apply_nms, convert_to_face_landmark_5, estimate_face_angle, get_nms_threshold | |
from facefusion.face_landmarker import detect_face_landmarks, estimate_face_landmark_68_5 | |
from facefusion.face_recognizer import calc_embedding | |
from facefusion.face_store import get_static_faces, set_static_faces | |
from facefusion.typing import BoundingBox, Face, FaceLandmark5, FaceLandmarkSet, FaceScoreSet, Score, VisionFrame | |
def create_faces(vision_frame : VisionFrame, bounding_boxes : List[BoundingBox], face_scores : List[Score], face_landmarks_5 : List[FaceLandmark5]) -> List[Face]: | |
faces = [] | |
nms_threshold = get_nms_threshold(state_manager.get_item('face_detector_model'), state_manager.get_item('face_detector_angles')) | |
keep_indices = apply_nms(bounding_boxes, face_scores, state_manager.get_item('face_detector_score'), nms_threshold) | |
for index in keep_indices: | |
bounding_box = bounding_boxes[index] | |
face_score = face_scores[index] | |
face_landmark_5 = face_landmarks_5[index] | |
face_landmark_5_68 = face_landmark_5 | |
face_landmark_68_5 = estimate_face_landmark_68_5(face_landmark_5_68) | |
face_landmark_68 = face_landmark_68_5 | |
face_landmark_score_68 = 0.0 | |
face_angle = estimate_face_angle(face_landmark_68_5) | |
if state_manager.get_item('face_landmarker_score') > 0: | |
face_landmark_68, face_landmark_score_68 = detect_face_landmarks(vision_frame, bounding_box, face_angle) | |
if face_landmark_score_68 > state_manager.get_item('face_landmarker_score'): | |
face_landmark_5_68 = convert_to_face_landmark_5(face_landmark_68) | |
face_landmark_set : FaceLandmarkSet =\ | |
{ | |
'5': face_landmark_5, | |
'5/68': face_landmark_5_68, | |
'68': face_landmark_68, | |
'68/5': face_landmark_68_5 | |
} | |
face_score_set : FaceScoreSet =\ | |
{ | |
'detector': face_score, | |
'landmarker': face_landmark_score_68 | |
} | |
embedding, normed_embedding = calc_embedding(vision_frame, face_landmark_set.get('5/68')) | |
gender, age = detect_gender_age(vision_frame, bounding_box) | |
faces.append(Face( | |
bounding_box = bounding_box, | |
score_set = face_score_set, | |
landmark_set = face_landmark_set, | |
angle = face_angle, | |
embedding = embedding, | |
normed_embedding = normed_embedding, | |
gender = gender, | |
age = age | |
)) | |
return faces | |
def get_one_face(faces : List[Face], position : int = 0) -> Optional[Face]: | |
if faces: | |
position = min(position, len(faces) - 1) | |
return faces[position] | |
return None | |
def get_average_face(faces : List[Face]) -> Optional[Face]: | |
embeddings = [] | |
normed_embeddings = [] | |
if faces: | |
first_face = get_first(faces) | |
for face in faces: | |
embeddings.append(face.embedding) | |
normed_embeddings.append(face.normed_embedding) | |
return Face( | |
bounding_box = first_face.bounding_box, | |
score_set = first_face.score_set, | |
landmark_set = first_face.landmark_set, | |
angle = first_face.angle, | |
embedding = numpy.mean(embeddings, axis = 0), | |
normed_embedding = numpy.mean(normed_embeddings, axis = 0), | |
gender = first_face.gender, | |
age = first_face.age | |
) | |
return None | |
def get_many_faces(vision_frames : List[VisionFrame]) -> List[Face]: | |
many_faces : List[Face] = [] | |
for vision_frame in vision_frames: | |
if numpy.any(vision_frame): | |
static_faces = get_static_faces(vision_frame) | |
if static_faces: | |
many_faces.extend(static_faces) | |
else: | |
all_bounding_boxes = [] | |
all_face_scores = [] | |
all_face_landmarks_5 = [] | |
for face_detector_angle in state_manager.get_item('face_detector_angles'): | |
if face_detector_angle == 0: | |
bounding_boxes, face_scores, face_landmarks_5 = detect_faces(vision_frame) | |
else: | |
bounding_boxes, face_scores, face_landmarks_5 = detect_rotated_faces(vision_frame, face_detector_angle) | |
all_bounding_boxes.extend(bounding_boxes) | |
all_face_scores.extend(face_scores) | |
all_face_landmarks_5.extend(face_landmarks_5) | |
if all_bounding_boxes and all_face_scores and all_face_landmarks_5 and state_manager.get_item('face_detector_score') > 0: | |
faces = create_faces(vision_frame, all_bounding_boxes, all_face_scores, all_face_landmarks_5) | |
if faces: | |
many_faces.extend(faces) | |
set_static_faces(vision_frame, faces) | |
return many_faces | |