facetest / facefusion /face_masker.py
LULDev's picture
Upload folder using huggingface_hub
a1da63c verified
from functools import lru_cache
from typing import Dict, List
import cv2
import numpy
from cv2.typing import Size
from facefusion import inference_manager
from facefusion.download import conditional_download_hashes, conditional_download_sources
from facefusion.filesystem import resolve_relative_path
from facefusion.thread_helper import conditional_thread_semaphore
from facefusion.typing import FaceLandmark68, FaceMaskRegion, InferencePool, Mask, ModelOptions, ModelSet, Padding, VisionFrame
MODEL_SET : ModelSet =\
{
'face_masker':
{
'hashes':
{
'face_occluder':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/dfl_xseg.hash',
'path': resolve_relative_path('../.assets/models/dfl_xseg.hash')
},
'face_parser':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/resnet_34.hash',
'path': resolve_relative_path('../.assets/models/resnet_34.hash')
}
},
'sources':
{
'face_occluder':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/dfl_xseg.onnx',
'path': resolve_relative_path('../.assets/models/dfl_xseg.onnx')
},
'face_parser':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/resnet_34.onnx',
'path': resolve_relative_path('../.assets/models/resnet_34.onnx')
}
}
}
}
FACE_MASK_REGIONS : Dict[FaceMaskRegion, int] =\
{
'skin': 1,
'left-eyebrow': 2,
'right-eyebrow': 3,
'left-eye': 4,
'right-eye': 5,
'glasses': 6,
'nose': 10,
'mouth': 11,
'upper-lip': 12,
'lower-lip': 13
}
def get_inference_pool() -> InferencePool:
model_sources = get_model_options().get('sources')
return inference_manager.get_inference_pool(__name__, model_sources)
def clear_inference_pool() -> None:
inference_manager.clear_inference_pool(__name__)
def get_model_options() -> ModelOptions:
return MODEL_SET.get('face_masker')
def pre_check() -> bool:
download_directory_path = resolve_relative_path('../.assets/models')
model_hashes = get_model_options().get('hashes')
model_sources = get_model_options().get('sources')
return conditional_download_hashes(download_directory_path, model_hashes) and conditional_download_sources(download_directory_path, model_sources)
@lru_cache(maxsize = None)
def create_static_box_mask(crop_size : Size, face_mask_blur : float, face_mask_padding : Padding) -> Mask:
blur_amount = int(crop_size[0] * 0.5 * face_mask_blur)
blur_area = max(blur_amount // 2, 1)
box_mask : Mask = numpy.ones(crop_size).astype(numpy.float32)
box_mask[:max(blur_area, int(crop_size[1] * face_mask_padding[0] / 100)), :] = 0
box_mask[-max(blur_area, int(crop_size[1] * face_mask_padding[2] / 100)):, :] = 0
box_mask[:, :max(blur_area, int(crop_size[0] * face_mask_padding[3] / 100))] = 0
box_mask[:, -max(blur_area, int(crop_size[0] * face_mask_padding[1] / 100)):] = 0
if blur_amount > 0:
box_mask = cv2.GaussianBlur(box_mask, (0, 0), blur_amount * 0.25)
return box_mask
def create_occlusion_mask(crop_vision_frame : VisionFrame) -> Mask:
face_occluder = get_inference_pool().get('face_occluder')
prepare_vision_frame = cv2.resize(crop_vision_frame, face_occluder.get_inputs()[0].shape[1:3][::-1])
prepare_vision_frame = numpy.expand_dims(prepare_vision_frame, axis = 0).astype(numpy.float32) / 255
prepare_vision_frame = prepare_vision_frame.transpose(0, 1, 2, 3)
with conditional_thread_semaphore():
occlusion_mask : Mask = face_occluder.run(None,
{
'input': prepare_vision_frame
})[0][0]
occlusion_mask = occlusion_mask.transpose(0, 1, 2).clip(0, 1).astype(numpy.float32)
occlusion_mask = cv2.resize(occlusion_mask, crop_vision_frame.shape[:2][::-1])
occlusion_mask = (cv2.GaussianBlur(occlusion_mask.clip(0, 1), (0, 0), 5).clip(0.5, 1) - 0.5) * 2
return occlusion_mask
def create_region_mask(crop_vision_frame : VisionFrame, face_mask_regions : List[FaceMaskRegion]) -> Mask:
face_parser = get_inference_pool().get('face_parser')
prepare_vision_frame = cv2.resize(crop_vision_frame, (512, 512))
prepare_vision_frame = prepare_vision_frame[:, :, ::-1].astype(numpy.float32) / 255
prepare_vision_frame = numpy.subtract(prepare_vision_frame, numpy.array([ 0.485, 0.456, 0.406 ]).astype(numpy.float32))
prepare_vision_frame = numpy.divide(prepare_vision_frame, numpy.array([ 0.229, 0.224, 0.225 ]).astype(numpy.float32))
prepare_vision_frame = numpy.expand_dims(prepare_vision_frame, axis = 0)
prepare_vision_frame = prepare_vision_frame.transpose(0, 3, 1, 2)
with conditional_thread_semaphore():
region_mask : Mask = face_parser.run(None,
{
'input': prepare_vision_frame
})[0][0]
region_mask = numpy.isin(region_mask.argmax(0), [ FACE_MASK_REGIONS[region] for region in face_mask_regions ])
region_mask = cv2.resize(region_mask.astype(numpy.float32), crop_vision_frame.shape[:2][::-1])
region_mask = (cv2.GaussianBlur(region_mask.clip(0, 1), (0, 0), 5).clip(0.5, 1) - 0.5) * 2
return region_mask
def create_mouth_mask(face_landmark_68 : FaceLandmark68) -> Mask:
convex_hull = cv2.convexHull(face_landmark_68[numpy.r_[3:14, 31:36]].astype(numpy.int32))
mouth_mask : Mask = numpy.zeros((512, 512)).astype(numpy.float32)
mouth_mask = cv2.fillConvexPoly(mouth_mask, convex_hull, 1.0) #type:ignore[call-overload]
mouth_mask = cv2.erode(mouth_mask.clip(0, 1), numpy.ones((21, 3)))
mouth_mask = cv2.GaussianBlur(mouth_mask, (0, 0), sigmaX = 1, sigmaY = 15)
return mouth_mask