Spaces:
Build error
Build error
from functools import lru_cache | |
from time import sleep | |
from typing import List | |
import onnx | |
from onnxruntime import InferenceSession | |
from facefusion import process_manager, state_manager | |
from facefusion.app_context import detect_app_context | |
from facefusion.execution import create_execution_providers, has_execution_provider | |
from facefusion.thread_helper import thread_lock | |
from facefusion.typing import DownloadSet, ExecutionProviderKey, InferencePool, InferencePoolSet, ModelInitializer | |
INFERENCE_POOLS : InferencePoolSet =\ | |
{ | |
'cli': {}, # type:ignore[typeddict-item] | |
'ui': {} # type:ignore[typeddict-item] | |
} | |
def get_inference_pool(model_context : str, model_sources : DownloadSet) -> InferencePool: | |
global INFERENCE_POOLS | |
with thread_lock(): | |
while process_manager.is_checking(): | |
sleep(0.5) | |
app_context = detect_app_context() | |
if INFERENCE_POOLS.get(app_context).get(model_context) is None: | |
INFERENCE_POOLS[app_context][model_context] = create_inference_pool(model_sources, state_manager.get_item('execution_device_id'), find_execution_providers(model_context)) | |
return INFERENCE_POOLS.get(app_context).get(model_context) | |
def create_inference_pool(model_sources : DownloadSet, execution_device_id : str, execution_provider_keys : List[ExecutionProviderKey]) -> InferencePool: | |
inference_pool : InferencePool = {} | |
for model_name in model_sources.keys(): | |
inference_pool[model_name] = create_inference_session(model_sources.get(model_name).get('path'), execution_device_id, execution_provider_keys) | |
return inference_pool | |
def clear_inference_pool(model_context : str) -> None: | |
global INFERENCE_POOLS | |
app_context = detect_app_context() | |
INFERENCE_POOLS[app_context][model_context] = None | |
def create_inference_session(model_path : str, execution_device_id : str, execution_provider_keys : List[ExecutionProviderKey]) -> InferenceSession: | |
providers = create_execution_providers(execution_device_id, execution_provider_keys) | |
return InferenceSession(model_path, providers = providers) | |
def get_static_model_initializer(model_path : str) -> ModelInitializer: | |
model = onnx.load(model_path) | |
return onnx.numpy_helper.to_array(model.graph.initializer[-1]) | |
def find_execution_providers(model_context : str) -> List[ExecutionProviderKey]: | |
if has_execution_provider('coreml'): | |
if model_context == 'facefusion.frame_colorizer': | |
return [ 'cpu' ] | |
return state_manager.get_item('execution_providers') | |